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1. INTRODUCTION 

The Implementation Definition Task of the TRW Voyager Support 

Study reported here  is a sequel to  the previous completed Advanced 

Mission Definition Study (TRW report  04480-6001-R000, November 1966). 

T h e k o j e c t  concept developed in this ear l ie r  work has been extended in 

t e rms  of implementation definition covering developmental and operational 

activities, schedules, and project costs. This volume summarizes the 

highlights of the s t u d  separately bound from the study report  itself, as 

a convenient means for viewing the major  results. 

---I- 

The Mars  exploration by the program under study is expected to  

This lead to a significant level of understanding regarding that planet. 

premise,  when applied to  the advanced missions in the last half of the 

1970's leads to  a comprehensive exploration capability, and in turn has 

a significant impact on the technical approach for  the initial missions. 

Hence, project definition within this framework revolves around critical 

questions of when and how, in addition to  what exploratory capability 

should be provided. 

T h e h e r l y i n g  objective of this study has been, therefore, to  

achieve insight regarding such implementation considerations and an  

understanding of the means by which the Voyager project can most 

effectively and economically be p u r s u d  Although studied for the 

project approach derived in the previous task, many of the implementa- 

tion considerations discussed a re  of a general nature and should there- 

fore be applicable to  the actual Voyager project. 

study has been to  identify and evaluate alternatives so as to  a r r ive  at 

a reference implementation definition. Such a reference is not intended 

to represent a definitive recommendation, however, but ra ther  to  facili- 

tate the investigation and evaluation of the various alternatives within a 

consistent framework. 

in the synthesis of the approach presented, but because of its importance 

to the study, additional discussion has been included in this summary 

volume. 

The approach for  the 
- -  

, _- 
_.  - . 

The evaluation of such alternatives is implicit 



. 
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The underlying motivation fo r  the study, as well as for  the preceding 

advanced mission definition work, has been to  generate independent input 

regarding Voyager program definition. In addition, there will be differ- 

ences between the study mater ia l  and current Voyager planning due to 

changes since the study ground rules were established in April 1966. 
Thus, many of the assertions about the Voyager program a r e  made in 

the context of the reference approach and so  may not apply to current  

official plans. Although an effort has been made to  stay within basic 

NASA project implementation policy in laying out the overall project 

framework, many Voyager -peculiar considerations have been derived 

and formulated on an independent basis.  

-.-__ _- 

~ - .  _----- 

In examining the development of the capsule system, substantial use 

has been made of the work completed in this a r e a  by Grumman Aircraft 

Engineering Corporation. Similarly we have made extensive use of the 

recent work by the AC Defense Laboratories of the General Motors 

Corporation on the Voyager mobile unit. 

2 
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2. PROJECT DEFINITION 

The general features of the plan upon which the imp1,ementation 

study is based a r e  a s  follows: 

Comprehensive Mars exploration on an 
expeditious basis 

Initial orbiting and landing missions at the 
1973 launch opportunity 

Precursor  life detection mission as a prerequisite 
for definition of the ultimate surface laboratory 

A two- o r  three-step surface laboratory development 

A standard flight spacecraft with payload changes as  
appropriate, with propellant loading varied from 
mission to mission 

A standard flight capsule (less science) sized for the 
advanced mission payload and offloaded for ear l ie r  
missions a s  appropriate 

2.1 PROJECT EVOLUTION 

Since the development lead time for any particular launch oppor- 

tunity is too long to allow substantial application of results f rom one 

launch opportunity to the next, an advance in  system development that 

requires previous mission experience can occur only after skipping one 

launch opportunity. Thus any major stage of development is  applicable 

to a se t  of at least  two missions, and such a se t  can be designated as 

encompassing one mission generation. For the program under con- 

sideration covering six launch opportunities, three such generations 

a r e  possible. 

The reference project approach calls for either two or  three 

generation programs, as illustrated in  Figure 1, depending on what is 

discovered on Mars. A simplified precursor landed science payload 

is utilized in  the first-generation 1973 and 1975 missions. 

detected and cultured, then definition and development of the final 
surface laboratory can proceed. If life is  not detected or cultured on 

If life is 

3 
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the first generation, we proceed to a mission generation which lands 

a comprehensive precursor payload. 

automated laboratory whose details will be based on data derived 

during the first generation but which will provide life detection experi- 

ments rather than the capability for advanced biological investigations , 
since i f  life is not detected there will be insufficient evidence for 

defining the requisite advanced laboratory characteristics. On the basis 

of the more  thorough findings f rom this second generation, then, the 
third generation will incorporate an  advanced surface laboratory to 

permit sophisticated biological investigations utilizing microbiological 

experimentation or  biochemical analysis as appropriate. 

This incorporates a long-life 

The strategy thus calls for a standardized basic capsule, flight 

spacecraft, landed science support, and an approach to the landed 

science payloads permitting a three-generation evolution. 

2 . 2  PROJECT ELEMENTS 

The first-level work breakdown segments for a NASA project a r e  

designated as systems. In keeping with this definition, such systems 

correspond to the project organizational structure just  below the 

project level. 

contractual alignments having direct  responsibility for the related 

work. At the same time each system is related to some principal 

functional entity for the project. 

of the current study there a re  six such systems: 

This structure then corresponds to administrative or  

For  the reference Voyager project 

0 Launch Vehicle System 

0 Spacecraft System 

0 Capsule System 

0 Launch Operations System 

0 Mission Operations System 

0 Tracking and Data Acquisition System 

5 



The launch vehicle system includes the Saturn V, the Voyager 

shroud, and the contractor personnel for the stages of the Saturn V 
assigned to support the launch operations at KSC. 

The spacecraft system includes the spacecraft  bus, propulsion, 
planetary vehicle adapter, and mission-dependent equipment and soft- 

ware for handling spacecraft telemetry and commands at DSN stations. 

It includes as well the facilities needed a t  KSC and elsewhere to develop, 

assemble, and test the spacecraft. Similarly the capsule system covers 

the capsule flight hardware, associated h4DE and OSE, and related 

facilities. 

The launch operations system includes the KSC Complex 39 
facilities assigned to Voyager and support f rom the A i r  Force Eastern 
Tes t  Range. The mission operations system incorporates these parts 

of the SFOF assigned to Voyager, and the tracking and data acquisition 

system includes these elements of the Deep Space Net and others 

assigned to support Voyager in tracking and data acquisition. 

The major elements of mission flight hardware a r e  defined below. 

0 Launch Vehicle. The launch vehicle consists of the 
Saturn S-IC stage, S-11 stage, S-IVB stage, instrument 
unit, interstage equipment, and shroud system. The 
shroud system is peculiar to Voyager and allows for 
individual encapsulation and handling of the planetary 
vehicles. 

0 Planetary Vehicle. A planetary vehicle consists of 
one flight capsule and one flight spacecraft mated 
for launch. 

0 Flight Capsule. A flight capsule consists of a lander 
and a canister/adapter. The lander is the element 
that separates and descends to  the Martian surface; 
it is made up of a capsule bus and the capsule science. 
The capsule science consists of an  entry payload that 
functions only during descent and the 1anded.science 
that operates on the surface. The canister/adapter 
serves to attach the flight capsule to the flight space- 
craf t  and to support the lander while maintaining its 
steri le condition. 

6 
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0 Flight Spacecraft. A flight spacecraft consists of 
a spacecraft bus, spacecraft  propulsion, and a 
space c raft s cienc e s ubs y s t em. 

0 Planetary Vehicle Adapter. A planetary vehicle 
adapter consists of all structure,  cabling, and 
hardware located between a planetary vehicle in 
flight separation point and the associated points of 
attachment to the shroud. 

2.3 PROJECT ORGANIZATION 

Organization and management for  the Voyager project can be 

described in  t e rms  of four levels as shown in Figure 2: 

0 Program direction 

0 Project management 

0 System management 

0 System implementation 

Program direction corresponds to overall executive authority and 

control, which is vested in the Voyager Program Director, NASA Head- 

quarters.  

office, which is either within NASA Headquarters or  par t  of a NASA 

field center designated to have project management responsibility. 

The first level of activity below the project level is designated as a 

system. 

more  NASA field centers. This responsibility is carr ied out through 

system management offices, each having cognizance over one of the 

Project management is delegated to the Voyager project 

Management responsibility at this level is delegated to one or  

Voyager system areas .  

is carr ied out by contractor and governmental organizations under the 

direction and management of the appropriate s y s  tem management office. 

Implementation of the various system elements 

The authorization for a project by NASA takes the form of a 

project approval document. 
the Voyager Project Director has the overall responsibility for 

achieving the Voyager objectives and ensuring that the Voyager project 

is compatible with the programmed goals and resources. 

Within the scope defined in this document, 

This involves 

7 
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formulation of project objectives and policy guidelines, programming 

and allocation of resources,  inter-project coordination, external rela- 

tions, and overall project evaluation and direction. The director is 

assisted by the Voyager program staff and makes use of technical 

advisory boards as appropriate, He has overall responsibility for 

definition of the scientific program and selection of the associated 

principal investigators. 

ments a r e  established by the project approval document, the detailed 

responsibilities a r e  defined by the project development plan as approved 

by the director. 

Although the basic sys tem management assign- 

Project management is delegated to the Voyager project office, 

which consists of a Voyager project manager and his supporting 

organization. 

as well as project definition and technical direction above the system 

level. Project definition and technical control a r e  exercised through 

mission specifications, intersys tem interface control specifications, 

and other project planning and control documents. 

approves all system specifications and other major system planning 

documents issued by the system management offices. 

The manager is responsible for  project-level management 

The project manager 

A System Management Office (SMO) under the direction of a system 

manager is established for each of the six Voyager systems, as shown 

in Figure 2. Since a system corresponds to a first major subdivision 

of work below the project level, it is defined in keeping with adminis- 

trative or contractual alignments representing direct  responsibility for 

such work. 

in Figure 2 by the as s ociation of organizational elements with each 

s ys tem management office at the implementation level. 

This work breakdown for  the Voyager project is indicated 

In addition to the definition of pr imary system cognizance in  

keeping with project work breakdown, a different alignment of responsi- 

bilities along functional lines is needed to c a r r y  out launch operations 

and mission operations. 

tion under the direction of another system as established by appropriate 

agreements between the affected SMO's and related administrative 

Such support elements f rom one system func- 

9 



or contractual arrangements at the implementation level. For example, 
during planetary vehicle / shroud sys tem operations, support is provided 

by the capsule contractor and shroud contractor to the spacecraft 
contractor, who has responsibility for such activities. 

10 
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3. SCHEDULE 

In keeping with NASA policy, the Voyager project will be carried 

out by a sequence of implementation phases, each defined to corres-  

pond to a specifically approved activity undertaken only after review 

and analysis of preceding work. 

tation, formal baselines a r e  established in sequence as illustrated in  

Figure 3 to allow review and control by various levels of project 

management . 

In keeping with the phased implemen- 

The overall project flow and schedule for the three-generation 

program is shown in Figure 4. 

fact that only three distinct generations of Voyager flight hardware can 

be accommodated by the six launch opportunities. Operations at Mars 

do not begin until early 1974, following the 1973 launch, but production 

of the capsule system for the 1975 launch must already have started, 

by early 1973. Hence no opportunity will exist for  modifications of the 

second Voyager based on data returned from the flight of the first. 

Although the preliminary design review for  the second-generation 

laboratory and mobile unit occur before the 1973 launch, design and 

development for these systems overlaps the return of data from the 1973 

laboratory by some six months, the critical design review being 

scheduled six months after the first has landed on Mars. Hence suffi- 

cient opportunity wi l l  exist to choose among alternate experiments and 

design approaches postulated during the second-generation Phase C and 

breadboarded during the early par t  of the following Phase D. 

clear,  however, that the reaction to the initial results will be limited 

to selecting among previously identified alternatives, time is not avail- 

able for preliminary design. or defining experiments after the f i r s t  

results a r e  obtained. 

This figure clearly demonstrates the 

It is 

An illustrative inter-contractor critical a r ea  for pacing the entire 

project is demonstrated in Figure 4. 

a r e  scheduled to be completed by mid-1972 and these tests must be 

compatible with deliveries to the capsule bus contractor of proof tes t  

models for the surface laboratory, mobile unit, and RTG. These 

The capsule system proof tests 



deliveries must occur a s  scheduled in  1971 to permit  adequate checks 

and sufficient time to react  to any interface problems uncovered. 

Hence the deliveries early in 1971 of the proof test models of the 

surface laboratory and mobile unit a r e  milestones in  the project that 

must  be monitored and controlled to avoid delay in  the important capsule 

proof testing . 
Figure 4 also illustrates the substantial load that Voyager may 

place on the ground system. If flight equipment lifetimes a r e  achieved 

in keeping with design goals, two orbiting spacecraft and two landers 

will need to be handled virtually continuously f r o m  1974 on, and by 1979 

o r  1980 this load may double unless pr ior  Voyagers are deliberately 

terminated as later ones reach Mars. 

12 
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4. SPACECRAFT IMPLEMENTATION 

The spacecraft  system is implemented by the spacecraft con- 
tractor,  under the direction and management of the spacecraft system 

management office, which in turn operates under the general cognizance 

of the Voyager project manager. 

4 .1  IMPLEMENTATION APPROACH 

The approach to spacecraft implementation embodies these 

key features: 

0 Early design data f rom development test  is  gained 
by completing laboratory engineering model unit 
environmental tests and integrating the engineering 
model units into the spacecraft engineering model 
prior to final drawing release 

0 Early reliability data is available f rom engineering 
model and type approval test  before initiation of 
proof tes t  model (PTM) testing. In addition, space- 
craft  life testing will be conducted on the engineering 
model spacecraft and subsequently on the proof test  
model spacecraft 

0 Type approval environmental testing of units is 
complete prior to the s t a r t  of spacecraft proof 
tes t  model environmental tests 

0 Verification of final design by PTM tests i s  achieved 
six months before flight art icle spacecraft a r e  
committed to environmental tests 

0 During spacecraft assembly, the buildup and check- 
out of subsystems will be accomplished "off line", 
providing high confidence in integration of the sub- 
system into the spacecraft 

0 The spacecraft assembly and test  spans include 
realistic operation spans with contingency spans 
applied in critical a r eas  

0 The equipment module and the propulsion module a r e  
integrated in parallel to increase physical access to 
the hardware and allow more operation time 

0 Time is available after delivery for additional testing 
prior to flight on the flight spacecraft, to increase 
confidence in  flight performance 

19 



\ 

Schedule confidence is enhanced by the modular design concept. 

The modular design permits "off line" buildup of subassemblies 

(subsystem elements) and parallel buildup of the equipment module and 

the propulsion module. 

time by reducing end-to-end span links and, in case of unanticipated 

problems, preventing adjacent interfaces f rom being changed by 

retaining decentralized assembly and tes t  operation. 

4.2 IMPLEMENTATION ACTIVITIES AND SCHEDULE 

The concurrent operations conserve schedule 

The gross  spacecraft project implementation flow for all  missions 

is shown in Figure 4 and in more  detail for the initial mission in  

Figure 5. 

in November 1967. 

The project is initiated with the issuance of a Phase C R F P  

Contract award is assumed to take place by 

I April 1968, with the preliminary design review in November 1968. 

Phase C will include detailed system design of the selected space- 

craft  system concept and the fabrication and tes t  of breadboard hard- 

ware of selected critical subsystems as  necessary to provide reasonable 

assurance that the technical milestone schedules and resource esti-  
mates for the next phase can be met. 

effort will be design and analysis and revision of the various space- 

craft  project management and implementation plans in accordance with 

NASA requirements. 

Concurrent with this system 

Under the direction of NASA, the spacecraft contractor will 

coordinate spacecraft interface requirements with those of other systems 

in the Voyager project. 

ments documentation will then be prepared and submitted to NASA for 

approval and issuance a f te r  the preliminary design review. 

Final spacecraft inter system interface require- 

The subsystem engineering effort will consist of an initial 

updating of subsystem design data and the initiation of design studies 

and analyses in  accordance with the directions of the system engineering 

design team. 

for  critical breadboard testing. 
The subsystem groups will also define the requirements 
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Phase D is to be initiated in January 1969. 

design of the overall spacecraft system wi l l  be started. This will 

include the design of engineering models, test  facilities, soft tooling, 

and special manufacturing devices. 

assembly and checkout of all flight-configured hardware will also be 

undertaken. Finally, detailed designs of flight-type art icles and MDE 

will be initiated and culminate in  a ser ies  of subsystem critical design 

reviews in February-March 1970, allowing over 2.5 years for  fabrica- 

tion, type approval testing, and delivery of the first flight article. 

Flight article unit fabrication starts in January 1971 and spacecraft 

qualification is completed in January 1972. 

At that time detailed 

Design of OSE to support the 

System FACI, as  finalized with acceptance of the first flight 

article, will be completed by November 1972, approximately nine 

months before the launch. 

one spare)  will be fabricated, assembled, checked out, and acceptance 

tested at the spacecraft contractor's facility prior to shipment to KSC. 
A l l  three systems will be shipped to KSC during the period December 

1972 to February 1973. 

Three flight-configured spacecraft (two plus 

The spacecraft system will remain essentially standardized for 

Modifications the additional five missions of the reference program. 

to the spacecraft fo r  product improvement and new science or  capsule 

integration requirements will be the pacing activities during these 

follow-on mission phases. 

The scheduling of major activities is generated by first defining 

the time before launch when it is necessary to initiate assembly and 

checkout of the first flight spacecraft. 

derived f rom a detailed, elapsed-time analysis of the tasks involved 

in launch site operations, shipping, flight acceptance testing, and 

assembly and checkaut operations. 

date for  each subsystem in terms of need date during the spacecraft 

assembly and checkout sequence. 

system flight acceptance testing and manufacturing span, the start date 

for the manufacturing of each flight subsystem is defined. 

need dates for  flight hardware drawing release a r e  established. 

The time required has been 

The next step defines the delivery 

In turn, by accounting for the sub- 

Thus the 
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The s ta r t  of proof test  model (PTM) assembly and checkout 

operations has been determined by scheduling completion of the major 

portion of the PTM type approval testing (i. e. , magnetic, vibration, 

acoustics, and space simulation testing) a suitable time pr ior  to comple- 

tion of assembly and checkout of the first flight spacecraft. 

straint  then establishes the delivery dates for  the PTM subsystem 

as s emblies . 

This con- 

The drawing release dates for the fabrication of the subsystem 

type approval and PTM assemblies has been se t  for each subsystem by 

the condition that subsystem type approval testing must  be complete 

prior to start of PTM environmental testing. 

facturing drawing baseline dates (hence CDR) for  each subsystem. 

CDR date then forms the basis for the subproject engineer to establish 

Phase D implementation plans and schedules. 

This establishes the manu- 

The 

4.3 SALIENT FEATURES AND IMPLEMENTATION ALTERNATIVES 

Zn considering implementation alternatives, the basic purpose 

is to develop an understanding of significant aspects concerning imple- 

mentation of the Voyager project. 

and the associated rationale brings out such information, even though 

explicit alternatives (other than the elimination of these features) may 

not be easy to identify. 

The discussion of salient features 

Thus such discussions a r e  included below. 

4. 3. 1 Spacecraft Standardization and Sizing 

The fundamental set  of alternatives affecting spacecraft imple- 
mentation relates to project definition. 

standardized spacecraft ra ther  than an evolving design leads to drama- 
tic simplification of the total program, since there is then only one 

major spacecraft development cycle. 
because spacecraft design does not depend critically on refinement of 

Mars data. However, standardization will not be realized unless the 

initial configuration fot the spacecraft provides adequate payload per-  

formance in tankage and structural  capability to support the la te r ,  

upgraded capsule systems. The problem, of course, is in  knowing 

at the outset what spacecraft sizing to provide. 
torical situation in which exploration requirements have tended to 

In particular, the use of a 

This standardization is possible 

Considering the his- 
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4. 3. 3 Spacecraft System Engineering 

The reference approach calls for a considerable amount of space- 

craft system engineering to be provided by the contractor, operating 

under the cognizance of the spacecraft system management office. 

This does not represent a duplication of the system engineering 

carried out by the SMO, since the emphasis for the SMO is intersystem 

and mission-oriented. In contrast, the emphasis for  the contractor is 

intrasystem, working to well-defined overall system and intersystem 

interface requirements. 

program indicate that such a contractor role i s  appropriate. 

The magnitude and complexity of the Voyager 

outstrip early estimates, it appears appropriate to size for the maxi- 

mum payload in Mars orbit consistent with Saturn V flight performance. 

4. 3. 2 Data Transmission Capability 

Another aspect of project definition affecting spacecraft imple- 

mentation i s  .the requirement for data transmission. 

ra te  of the reference approach has been selected in keeping with the 

comprehensive Mars exploration postulated for the study. 

approach makes possible an extensive Mars mapping capability, a t  the 

expense of some complexity to the spacecraft itself and considerably 

more  complexity to the ground data handling system. The preliminary 

investigations of this study have indicated such an approach is feasible, 

although further studies a r e  required to a s ses s  the overall cost 

effectiveness of such an approach. The projected long stay times in 

orbit and the many missions tend to reduce the requirement for data 

rate. 

data transmission capability for a reduction in coverage by the ground 

stations. The high data ra te  initially also provides for comprehensive 

mapping early in the program, which is important for effective defini- 

tion of the follow-on missions. 

The high data 

Such an 

On the other hand i t  will be possible to exchange any excess 

4. 3. 4 Science Integration 

Another salient feature of the reference approach relating to 

the assignment of contractor responsibilities has to do with science 

integration and as  s ociated equipment responsibilities. 
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The implementation of spacecraft  science involves both inter-  

system and subsystem considerations. The relation between the space- 

craft  contractor and the principal investigators is analogous to an inter-  

system interface in that the principal investigator s have independent 

contracts with NASA. A t  the same time, the experiment equipment as 

well a s  other spacecraft science payload elements have a complex and 

intimate relationship to the spacecraft hardware akin to that of a space- 

craf t  hardware subsystem. 

requires a comprehensive role on the par t  of the spacecraft contractor 

for integration of such equipment. 

as the planetary scan platform, the fixed science packages, and the 

science data automation equipment should be developed by the spacecraft 

contractor as part of the spacecraft bus rather  than supplied a s  GFE. 

This relationship is the key feature and 

As  a corollary, such major elements 

F o r  most  experiments in the reference payload there is a parti-  

cular central science instrument. It is expected that the associated 

principal investigator will supply such equipment to NASA, and this 

will in turn be delivered to the spacecraft contractor as GFE. 

case of the imaging system, however, the equipment represents a 
complex engineering and development task, and for the reference project 

approach will be supplied by the spacecraft contractor. The experiments 

which utilize the imaging system will then be defined by selected prin- 

cipal investigators, who will participate in defining the requirements 

for the imaging system and its design characteristics. 

course be concerned with how the system is used during the mission. 
This includes selection of fi l ters,  resolution, and areas  to be photo- 

graphed, e tc . ,  and they will interpret the pictures obtained for  scien- 

tific context. 

In the 

They will of 

4.3. 5 Engineering Model Hardware 

The use of engineering models is proposed for the following 

reasons : 

0 Equipment almost identical to flight hardware can 
be produced with preliminary tooling early in the 
s c he dule 

0 Test procedures can be checked in an informal 
atmosphere 
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0 Design changes can be incorporated before the 
cri t ical  design review 

0 OSE and computer programs can be debugged 
during the EM cycle 

0 Time and expense of EM tests will be compensated 
fo r  by smoother flow of official TA and F A  tests 

. 

The f i r s t  engineering model, o r  laboratory engineering model, 

may be made in engineering laboratories and does not require potting. 

The initial tests on this model a r e  the same as for breadboard tests. 

Thus, when breadboards a r e  not needed for design purposes, the bread- 

board tests may be replaced by engineering model tests when the 

schedule permits. 

interference and magnetics. After assembly-level tests,  the engineer- 

ing model assemblies a r e  integrated into a subsystem fo r  subsystem- 

level tests. 

f o r  continued monitoring and tests.  

Engineering model tes ts  also include electromagnetic 

This EM subsystem may replace the breadboard subsystem 

The second engineering model of an assembly is used for the 

engineering model spacecraft. 

turing a rea  and is equivalent to flight hardware with respect to confor- 

mal coating and potting. 

dinated with the program for the first model so that a complete spectrum 

of environments i s  covered by the two models. 

tion to TA levels can be performed on the second model since the par ts  

a r e  potted. 

This model is made in the manufac- 

The test  program for this model is coor- 

F o r  example, vibra- 

4. 3.6 System Test  Approach 

System testing of the engineering model spacecraft is performed 

primarily a s  a system compatibility and facility validation task, but 

i t  will also be used for environmental and life testing. 

to verify OSE design, debug procedures and operations, and train 

personnel. 

operation sequence and to verify compatibility with the Deep Space 

Network. 

be used to validate launch site procedures, equipment and facilities. 

It wi l l  be used 

The EM will be used a t  Goldstone to perfect the mission 

The EM spacecraft and the proof tes t  model spacecraft wi l l  
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The system testing of the PTM is aimed at system design verifi- 

It wi l l  cation and environmental type approval of flight type hardware. 
also serve to further debug procedures, operations, and OSE and to 

train personnel. 

system tests will be specifically checked. 

to perform reliability life tests. 

Any design changes made as a resul t  of the EM 

The PTM will also be used 

The acceptance testing of the flight spacecraft system is per-  

formed primarily as a w o r h a n s h i p  verification. 

problems will have been resolved by the EM and PTM spacecraft. 

The major design 

During system testing, the electrical interfaces between the 

spacecraft and the OSE will be minimized. Test  cables constitute a 
nonflight configuration and can cause abnormal system operation as 

well as injecting unwanted noise. 

craft  in a configuration as close as possible to a flight configuration. 
Sufficient spacecraft telemetry will be provided to isolate faults to the 

provisional spares level and to enable verification of command status. 

Certain commands a r e  required for testing and will aid in keeping 

hardline use to a minimum. 

to check redundant system operation. 

The goal will be to operate the space- 

These commands will primarily be used 

Wherever possible, system test  stimulation (external stimuli 

used to excite flight equipment, usually having only a mechanical inter-  

face with the spacecraft) will be used, ra ther  than simulation (signal 

injection), to perform an end-to-end system test. The same stimuli 

used during system tests will be used at the subsystem level. However, 

the subsystem test may incorporate additional stimulation or simulation. 

4. 3. 7 Telemetry Usage for Test  

The spacecraft test  approach is to be based on making maximum 

use of telemetry for ground checkout, to minimize the number of hard- 

lines to the spacecraft, and to allow testing in a mode more  closely 

approximating the flight configuration. 

of sufficient telemetry to isolate faults to the provisional spares  level. 

Analog telemetry functions a r e  to be sampled at a sufficiently high rate  

so that all system parameters can be adequately evaluated, which may 

require a commutator speedup mode for ground test. 

- 

This policy requires allocation 
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Provisions to verify receipt and execution of all commands as 

well as current command status is to be provided via telemetry. 

is  to include delayed commands sent to storage in the computer and 

sequencer as well a s  the direct commands sent via the command 

subs y s tem. 

This 

4. 3. 8 Degree of Automation for OSE 

The need for a computer in the system test  complex has never 

been at issue, but rather,  given a general-purpose computer, the 

question is what level of emphasis should be placed on manual versus 

automated approaches to test  sequencing, patching of OSE measuring and 

stimulation equipment into test configurations, and logging tes t  measure- 
ments and evaluating them for  status presentations. 

A number of subsystem and system test  parameters to be con- 

sidered with respect to the choice of automatic versus manual control, 

as shown in Table 1. In general, the comparison indicates that auto- 

matic checkout is superior to manual in that the testing performed is 

faster (encouraging more exhaustive and more frequent testing), more  

dependable with respect to the way it is performed and recorded, 

and less  likely to result  in spacecraft damage from procedural e r ro r s .  

It is inferior in that unexpected conditions a r e  more likely to go unrec- 

ognized, total program costs attributable to system test  a r e  likely to 

be higher (in spite of saving test man-hours), and automatic test  equip- 

ment is more difficult to produce on a short  schedule. 

reliability (as distinct f rom total  test  reliability) is worse for  the 

automatic equipment, by virtue of the difference in  component popula- 

tion, although measures  can be taken to combat this problem by such 

means as backup modes and conservative logic. 

Equipment 

Although a quantitative assessment appears impractical, i f  

more  tests of a meaningful nature are performed more  frequently, 

and more data is gathered permitting better statistical and trend 

analyses, it appears reasonable to assume that chances for  mission 

success a r e  improved. In addition, checkout and replacement times 

during launch operations will be reduced to enhance chances of meeting 

the launch period constraints. 

has been selected for the reference STC configuration. 

It is on this basis that automatic checkout 

29 



Table 1. Automatic Versus Manual Testing Tradeoffs 

P a r a m e t e r  

Testing speed 

Tes t  condition 
repeatibility 

Requirements on 
operating personne 

Tes t  documentatioi 

Flexibility 

Spacecraft damage 
potential 

Fault isolation 
ability 

Reliability 

Recognition of 
unexpected 
conditions 

Development 
cost  

Total p rogram 
cost  

Development 
schedule 

Automatic 

Limitations i n  this  case will only be 
t ransient  settling t imes  in  spacey 
craf t  and OSE, and i n  command t imes 
when R F  commands are used. 

Limited only by stability of tes t  
equipment. Requires  configuration 
control of software to s a m e  degree 
as hardware. 

Reduces actions required, but f re-  
quently encounters res is tance to 
use in  place of famil iar  manual 
methods, especially i f  initial inte- 
gration encounters problems. 

Excellent, if analysis  preceding 
software design is accura te  in pre-  
dicting operational conditions and 
procedures. 

In pract ice  l e s s  flexible than 
manual because of additional 
problem of unforeseen effects of 
program changes. 

Little danger. Reaction t ime 
shor te r  than manual and shutdown 
procedures  m o r e  reliable. 

Much fas te r ,  but accuracy depends 
on ski l l  in analysis of failure modes 
and symptoms, which i s  done i n  
paral le l  with spacecraf t  equipment 
development. 

Equipment reliability i s  worse be- 
cause more  equipment of grea te r  
complexity is  involved, but total 
tes t  p rocess  reliability may be 
bet ter  because of reduced 
opportunities for human e r r o r .  

Depends ent i re ly  on skill of system 
designer-usually sys tem is 
limited in this respect. 

Substantially grea te r ;  software 
cos ts  can equal computer equip- 
ment costs. 

Higher, but difference f rom 
manual reduced by lower testing 
t ime and fewer operating 
personnel. 

Longer, and more  difficult to 
compress ,  because people 
needed are more  skilled and 
must  be versed in total-system 
details. Integration with space- 
c raf t  normally takes longer. 
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Manual 

Limited by operator  speed- 
much slower than automatic. 

Limited by c a r e  exercised by 
operator .  Can be controlled 
by discipline in  use of written 
procedures  

Increases  number of personnel 
required,  but requires  shor te r  
t ime to build up confidence of 
experienced personnel in  tes t  
methods. Test  personnel 
qualifications required a r e  
higher. 

One of the major  difficulties of 
manual tes t  systems.  
Discipline in  tes t  resul t  report-  
ing must be constantly monitored. 
Tendency not to record transient 
o r  unexplainable events. 

Difficulties in implementing 
changes in tes t  procedures o r  
tes t  equipment dependent on 
change control procedures in 
effect. 

Depends entirely on skill,  
a le r tness ,  and reaction time 
of operators .  Reaction time 
inevitably longer than 
automatic. 

Depends on skill of operators ,  
but improves rapidly with time, 
as operators  gain experience 
with spacecraft. 

Equipment reliability better 
because equipment i s  s implcr  
but fault may go unrecognized 
longer because selfcheck i s  
not automatic. Iluman e r r o r  
a grea te r  problem. 

Depends on skill and a le r tness  
of opera tors ,  but normally 
much better than automatic 
system. 

L e s s ,  expecially if t es t s  can 
be configured to use com- 
merc ia l  equipment. 

Probably lower than automatic, 
i n  spite of increased man- 
hours  and level of personnel 
per  tes t ,  unless  number of 
spacecraf t  i s  large.  

Tends to be more  easily 
separable  into paral le l  
segments ,  and design i s  l e s s  
cr i t ical ly  dependent on exact 
tes t  procedures  to be used. 



4. 3. 9 Propulsion Interaction Testing 

A propulsion interaction test  can take any of the following three 

Support a structural model of the spacecraft in an 
altitude chamber on soft mounts and measure equipment 
response. This teat is used to establish equipment 
environment as  well as  to verify that there a r e  not 
propulsion system Structural interaction problems. 

Soft mount a rtructural spacecraft in an altitude chamber 
complete with operating equipment and f i re  the engine. 

Soft mount the spacecraft in an altitude chamber with 
sufficient angular freedom to conduct control system 
compatibility tests.  

Tests (1) and (2) a re  similar except that (2) is an actual demonstration 

using operating components, whereas (1) requires extensive vibration 

measurement and data analysis as  well as  equipment qualification 

testing. 

interactions. 

longitudinal sinusoidal oscillations, generally caused by coupling 
between the feed system, engine, and vehicle structure. Approach (1) 

is recommended because it can be accomplished ear l ier  and is simpler 

and less  expensive. 

Both provide adequate investigation of propulsion-structure 

Such interactions a re  characterized by self-excited 

Test  (3) was used on the Mariner program by mounting the space- 

craf t  on bungees and firing the engine with an active flight control 

system. On most other programs this concern has been satisfied 

using subsystem transfer function tests such a s  control system servo- 

loop and modal survey structural tests.  For the large Voyager space- 
craft, the difficulties of test  operation a r e  perhaps greater than the 

design problem being investigated. 

the 1 g field related to sloshing frequencies as  well as  the mount require 

mente require considerable post-test analysis and make a full-scale 

Voyager test  undesirable. However, an air-bearing test  r ig  developed 

for OGO and already in existence may make a scale model test  

attractive. 

Also the compromise necessary in  
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4. 3.10 Thermal Model Testing 

The objective of a thermal model test is verification of the space- 

craft  thermal analysis and design. 

tes t  could be conducted on a system o r  a subsystem level. 

For  the Voyager Spacecraft the 

A system level test  requires a complete thermal model of the 

flight spacecraft; a subsystem level test requires sectioning of the 

flight spacecraft into components having well-defined thermal boundary 

conditions. 

be sectioned into the following five major grouping of components: 

For  a subsystem level tes t  program the spacecraft would 

The main compartment including associated structure and 
a simulated solar a r r a y  

The planetary scan platform, including i ts  gimballing 
s ys tem 

Antenna systems, which would individually be tested 
along with associated gimballing systems 

External experiments, which would be individually 
tested 

The solar a r r a y  

The system approach to thermal testing utilizing a thermal 

model and solar simulator is technically superior to the subsystem 

approach, and has been selected for the reference approach, although 

more  expensive. It also requires the availability of the large vacuum 

chamber that i s  also required for spacecraft qualification and accep- 

tance testing, so will need to be carefully scheduled. 

4. 3. 11 Magnetic Testing 

The reference approach requires spacecraft magnetic testing 

both for development, type approval, and flight acceptance. However, 

the magnetic properties control program is based on comprehensive 

analytical modeling supported by component tests. Experience with 

the Pioneer spacecraft, which had a stringent magnetic control 

requirement, has indicated the modeling approach to be quite valid. 

Hence significant reduction in  magnetic testing of the Voyager space- 

craft  appears possible. In particular it may be possible to eliminate 
this testing fo r  flight acceptance. 
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4. 3. 12 Reliability Testing 

Reliability testing on Voyager is based upon the maximum 

utilization of tee t data generated throughout the program, supplemented 

by special tee ting in areas  considered to represent potential reliability 

problems. Specifically, the approach consists of: 

0 Design of developmental tests to a s su re  generation 
of appropriate reliability data 

0 Utilizing units which have completed type approval 
tests to generate life test data for time-sensitive 
equipment 

0 Developing a s t ress- tes t  program for one or two 
units representing potential problem areas as new 
or significantly modified designs, representing new 
applications, past experience, mission criticality, etc. 

A classical reliability test program involving formal statistical 
verification of reliability requirements has been rejected as too 

expensive and time consuming. 
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5. CAPSULE IMPLEMENTATION 

5.1 CONTRACTOR ROLES 

The central role for capsule system implementation is car r ied  
The landed science payload elements out by the capsule contractor. 

a r e  each separately implemented by the surface laboratory contractor 

and the mobile unit contractor, .and the RTG system is also implemented 

by a separate contractor. 

capsule system by the capsule contractor. 

operate under the direction and management of the capsule system 

management office, which in turn operates under the general cognizance 

of the Voyager project manager. 

, All of the elements a r e  integrated into the 

All of the contractors 

The capsule SMO is responsible fo r  establishing the capsule bus- 

surface laboratory, capsule bus -mobile unit, capsule bus -RTG, and 

surface laboratory-mobile unit interfaces. 

the capsule contractor plays a major support role, because of his 

responsibility for integration of the surface laboratory, mobile unit, 

and RTG into the capsule system. 

In this interface definition 

The elements associated with the total capsule project segment 

a r e  covered briefly in Section 2 .2 .  

to the surface laboratory contractor i s  designated as  the surface 

laboratory project. 

stepwise laboratory development of the reference project approach, 

which includes the following tasks: 

The project segment under contract 

The associated project breakdown covers the 

0 Provide surface laboratory flight hardware, 
which include s de ploy able sample acquisition 
device s, proce s sing and handling equipment, 
deployment mechanisms , and other support 
hardware and structure into which the landed 
science experiment equipment is integrated 

0 Provide science support flight and ground hard- 
ware, and integrate experiments into the 
surface laboratory 

0 Provide developmental models , spares ,  soft- 
ware, and OSE associated with the above 
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. Assist in achieving compatibility with the 
mobile unit and with the capsule bus . Participate i n  preflight and mission opera- 
tions in regard to the surface laboratory 

The project segment under contract to the mobile unit contractor 

is designated.as the mobile unit project, and includes the following tasks: . Provide mobile unit flight hardware and the 
associated models, spares,  software, and 
OSE 

0 Assist in achieving compatibility of the mobile 
unit with the capsule bus . Participate i n  preflight and mission operations 
with respect to the mobile unit 

The project segment under contract to  the capsule contractor is 

designated as the capsule project, and includes the following tasks: 

a Provide capsule bus and canister flight hard- 
ware and the associated models, spares, 
software, and OSE 

0 Provide science support flight and ground 
hardware and integrate the surface laboratory, 
mobile unit, RTG, and entry science payload 
with the capsule bus . Provide preflight operations for the capsule and 
participate i n  the integration of the capsule with 
the spacecraft and in space vehicle prelaunch 
operations . Participate in mission operations with respect 
to capsule project hardware 

The RTG elements which are part of the capsule system are 

provided to the Voyager project by the AEC. 
contract f rom the AEC t o  the RTG contractor is designated the Voyager 

RTG project, and includes the following tasks: 

The project segment under 

a Provide RTG flight hardware and the associated 
models, spares, software, and OSE . Assist in achieving compatibility of the RTG 
with the surface laboratory and the capsule bus 

0 Participate in preflight and mission operations 
in regard to the RTG 
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This section discusses the role of the capsule contractor, providing 

an overall framework for  the total capsule system implementation. 

Sections 6, 7, and 8 discuss RTG, surface laboratory, and mobile unit 

implementation. 

Within the resources of the Voyager Support Study it has not been 

possible to carryout a preliminary design and develop the related 

implementation definition for a capsule system. However, a cooperative 

data exchange between TRW and the Grumman Aircraft Engineering 

Corporation was arranged to make available data f r o m  the extensive work 

done by GAEC in this area,  and capsule implementation definition for the 

study is founded in large measure on this data. 

5.2 IMPLEMENTATION APPROACH AND SCHEDULE 

The gross project flow for the capsule system was shown in 

Figure 4; it is given in  more detail for the initial mission in Figure 6. 
The schedule assumes Phase B activities completed by October 1967 

and Phase C for the capsule bus initiated with the issuance of an R F P  

by December 1967. 

completed by April 1968. 

during this phase will be quite similar to those for the spacecraft system. 

However, because there will be three intrasystem associate contractors, 

it is anticipated that the interface control documentation activities for 

the capsule contractor will be more extensive than for  any other major 

Voyager program associate contractor. 

Selection of a capsule contractor should be 

The overall schedule and major activities 

Because of the more complex interactions among the equipment 

constituting the capsule system and because of the more stringent 

sterilization requirements, the capsule development cycle will require 
more tes t  activities and more time than that for the spacecraft. The 

major development tes t  models required to support capsule development 

leading to formal qualification testing of capsule hardware a r e  as 
follows : 

0 Configuration model 

0 Sterilization control model (SCM) 

0 Structural model (SM) 
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0 Thermal model (TM) 

0 Engineering model (EM) 

0 Propulsion integration model (PIM) 

0 Proof test model (PTM) 

These capsule models are used primarily for  design verification 

testing. 

qualification testing and the PTM is used to complete subsystem quali- 

fication, perform systems level qualification, and verify capsule flight 

acceptance te st procedures. 

The SM and PIM, however, a r e  also used for initial subsystem 

The configuration model is initially constructed as a soft article 

This mockup is used as and is la ter  upgraded to a hard configuration. 

an engineering tool early in the program. 

maintained correspondent with design until the completion of the fir st 
deliverable capsule. 

The hard mockup will be 

The principal functions a re  as follows: 

0 Develop internal and external flight configuration 

0 Develop routing of plumbing and harnessing 

0 Re pr e sent spacecraft -c apsule interface s and 
interfaces with the surface laboratory and 
mobile unit and the RTG 

0 Develop OSE interfaces 

The SCM simulates a full-size capsule configuration and is capable 

of enduring repetitive exposures to the ETO/heat- sterilization cycle. 

It consists of a representative metallic structure with dummy subsystems. 

At the contractor's facility this model is used primarily in  eupport of 

the capsule clean-room and sterilization-facility operations. 

cipal functions of the SCM a r e  as follows: 

The prin- 

0 Train personnel involved in operations within 
the Class 100 facility 

0 Develop factory procedures in contamination- 
controlled areas 

0 Ve r ify cle an- r oom facility pr oce dur e s . C omple - 
tion of this activity relieves the constraint upon 
the start of the PTM structure final assembly by 
demonstrating the validity of capsule factory buildup 
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0 Conduct contamination control investigation 
and verification tes ts .  
phase relieves the constraint upon the s t a r t  
of PTM testing by demonstrating validity 
of contamination control techniques 

Completion of this 

This model would also be made available to KSC for terminal sterilization 

facility verification tes ts  and capsule contamination control procedures 

verification. 

After assembly and integration of the capsule bus with the surface 

laboratory, mobile unit, and RTG, checkout of the entire capsule system 

will take place at the capsule contractorts facility. 

Upon completion of decontamination operations , acceptance tes ts  , 
and mission acceptance review, four overall capsule systems will be 

shipped to KSC from November 1972 to January 1973 allowing about eight 

months for prelaunch checkout, sterilization operations, planetary 

vehicle integration support at KSC, and pad operations. 

During follow-on missions the capsule bus like the spacecraft will 

remain fa i r ly  standardized in its configuration. However, extensive 

changes to the surface laboratory and mobile unit for the second and 

third generation missions will impose considerable implementation 

activities upon the capsule contractor. 

years  has  been scheduled for implementation of the capsule systems for  

these future missions. 

Thus slightly more than two 

5.3 IMPLEMENTATION ALTERNATIVES 

Many of the project alternatives discussed in Section 4. 3 that 

deal with general implementation considerations apply as well to the 

capsule project, Here only those alternatives peculiar to the capsule 

project a r e  discussed. 

5.3.1 Capsule Performance 

The most significant capsule implementation alternative8 relate 

to the level and phasing of capsule landed payload and science support 

performance, i. e . ,  the capability to be accommodated versus any 
concomitant implementation complexity. However, an increase in 

gross  landed payload capability does not necessarily result  in additional 
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I O  developmental complexity. Rather, i f  this capability allows a more 

conservative, straightforward design approach, the net result  is to 

simplify the program and yield a higher schedule confidence. 

The major question then relates to  the degree of science support 

provided by the capsule both initially and downstream. 

tradeoff is fundamental and involves the degree of exploration selected 

as a basic program goal versus the required program scope and cost. 

As presented in Reference 1, the postulated approach is a comprehensive 

Mars exploration program. 

significant precursor life detection capability is required on the first 

mission. The associated lifetime requirement, coupled with the 

desired ultimate long- stay capability, leads to early implementation of 

an RTG power source. 

examine the feasibility of such an  RTG implementation. 

f rom this preliminary investigation was positive and it is felt that such 

an implementation can be carr ied out for the 1973 mission with high 

confidence of success if pursued vigorously. 

Here the 

In that framework it has  been argued that a 

A significant objective of the study was to 

The conclusion 

Another significant performance as pe ct affecting capsule 

implementation is the need f o r  high data rate. 

for the postulated comprehensive Mars exploration capability. 

resulting capsule configuration affects the system breakdown and 

associated implementation responsibilities as discussed below. 

has  a strong impact on mission operations and associated support. 

This is a key feature 

The 

It a l s o  

5.3.2 Capsule System Breakdown 

The capsule system breakdown for the reference approach 

corresponds to the ground rule at initiation of the study. 

current Voyager plans in that a single system management office is 

considered instead of separate offices for the capsule project and for 

the landed science. 

load distribution among NASA centers versus  the added complexity of 

an additional intersystem interface. The only aspect considered here  

is that of interface definition. 

I t  differs f rom 

The tradeoff here  relates to a more uniform work 
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The reference science support includes a la rge  high-gain 

antenna and medium-gain backup with RTG power and associated 

semi-passive thermal control. With this equipment there will be 

significant associated vehicle design and integration aspects. 

the science support equipment is consolidated with the capsule bus 

project segment to be implemented by the capsule contractor, ra ther  

than as par t  of the surface laboratory project. 

Hence 

5 . 3 . 3  Capsule Integration and Delivery 

Various alternatives exist f o r  the degree of participation of the 

contractors for the surface laboratory, mobile unit, and RTG equip- 

ment in the capsule integration and delivery process.  

complexity of the associated interfaces it is felt desirable to have as 

complete a capsule system acceptance tes t  as possible for acceptance 

prior to commitment of the hardware to the operations phase. 

then requires separate acceptance tests of these elements at an ear l ie r  

time consistent with delivery as G F E  to the capsule contractor. 

Because of the 

This 

5.3.4 Contamination Control and Sterilization 

The area  of biological contamination control and sterilization 

fo r  the capsule project is a complex one involving many alternatives 

that require treatment outside the limits of this study. 

concluded that there is a requirement for  a special capsule tes t  

art icle to support comprehensive contamination control development 

activities encompassing personnel training and procedure and facility 

verification. 

However it is 

Alternatives exist in regard to  treatment of propellants and 

thermolabile components during heat sterilization. 

t o  design tankage t o  be compatible with sterilization with on-board 

propellant, but detailed design studies a r e  needed. The thermolabile 

It appears possible 

elements associated with life detection experiments will probably 

require steri le insertion after the heat cycle. 

46 



6. RTG IMPLEMENTATION 

6. 1 ROLES AND RESPONSIBILITIES 

The Voyager RTG is implemented by an associate contractor under 

the cognizance of the AEC as described in Section 5.1. 

objectives a r e  defined jointly by the AEC and NASA, the AEC will assume 

RTG development responsibility and NASA will assume RTG-vehicle 

integration responsibility. The RTG will be a government-furnished 

i tem to be integrated into the capsule by the capsule contractor under 

the technical direction of the capsule SMO. Close liaison between the 

two contractors and the NASA and AEC project offices concerned will be 

essential, since RTG and vehicle interactions give r i s e  to  a complex 

engineering job. 

After the RTG 

Although vehicle integration of the RTG will be carr ied out by the 

capsule contractor, the RTG contractor will provide extensive support. 

A particularly cri t ical  interface arises in rejecting RTG heat through 

the capsule canister and launch vehicle shroud. 

faces involve countermeasures for  the effects of RTG radiations and 

magnetic fields, and system checkout and handling procedures after 

nuclear heat source installation. 

working group with AEC, NASA, and contractor participants for  r e -  

solving such interfaces is  advisable. 

Other important inter-  

An RTG-Voyager capsule interface 

The stockpiling, processing, shipment, and encapsulation of P u  238 
fuel in the form and quantities required will be an AEC responsibility. 

Fuel capsule design, development, qualification, and component fabrica- 

tion will be an RTG contractor task. 

shipped by the RTG contractor to an appropriate AEC facility, such as 

Mound Laboratory, for  fuel capsule loading and closure and heat source 

assembly. 

and reduce i t s  radiation wi l l  also be provided by the RTG contractor. 

Components other than fuel will be 

Shipping containers which dissipate the heat source power 

Safety documentation necessary to obtain approvals for  operations 

involving nuclear heat sources wi l l  be generated by the RTG contractor, 

with Voyager vehicle, trajectory, environmental, and mission inputs 
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furnished as required. 
normal and all conceivable abort circumstances, presented in accordance 

with AEC-established format.  

perimental evidence and tes t  results f rom the heat source development 
program. Preliminary, interim, and final safety reports will be pro- 

cessed through AEC, NASA, and DOD (range operation) channels. The 

ear l ier  reports wi l l  fo rm the basis for approving nuclear ground test  

operations in RTG contractor and Voyager capsule contractor facilities. 

These documents will include safety analyses for 

They will a lso include substantiating ex- 

6.2 IMPLEMENTATION APPROACH AND SCHEDULE 

The gross  RTG project flow for all missions is shown in Figure 4 

and is in more  detail for the initial mission in Figure 6.  

assumed that the RTG system requirements will have been defined by 

the capsule contractor during Phase B. 

provided to the capsule SMO for  review and transmitted to the AEC as 

the cognizant agency for implementation of this system. 

by the AEC is estimated to  occur by April 1968. 

gration of the RTG system into the capsule system, delivery of eight RTG 

systems (with simulated heat sources) has been scheduled for the f i rs t  

half of 1972. The radioisotope heat sources will also be shipped to the 

capsule contractor facility during the last  quarter of 1972. 

source is used only for  final capsule acceptance testing to minimize the 

hazards associated with isotope handling. 
signature data supplied to the capsule contractor, integration and checkout 

of the capsule using the RTG system with the simulated heat source will 
prove adequate for much of capsule system testing. Eight heat sources 

a r e  to be supplied for each mission. 

with supplying two spare flight capsules in a complete flight-ready con- 

dition. 

on the basis of a two-year cycle, but with each cycle starting approxi- 
mately six months prior t o  the launch date of the previous mission. 

Furthermore,  t o  conserve the isotope inventory, it is anticipated that 

unused spare  heat sources will be sent back to the AEC for reprocessing 
and used again on future missions. 

It has been 

These requirements will be 

A contract award 

To permit timely inte- 

The heat 

It is felt that with radiation 

This approach will be compatible 

The RTG systems for the follow-on missions will be implemented 
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After extensive testing of heat source materials and components 

and of RTG engineering models operated with simulated heat sources, 

two prototype RTG's complete with nuclear heat sources a r e  programmed. 

The f i rs t  prototype is used for qualification tes ts  conducted by the RTG 
contractor and then shipped to  the capsule contractor's facility. A second 

prototype is also shipped to the capsule contractor, but only the generator 

is processed through the RTG contractor's facility while the assembled 

heat source is shipped directly f rom Mound Laboratory. Both prototypes 

a r e  then installed in the capsule proof test  model for qualification testing 

of the entire capsule system in its nearly exact flight configuration. 

after, the prototypes are available for KSC facility checkout. 

There- 

All generators a r e  checked before and after vehicle installation 

using electrical heat source simulators. Flight generators a r e  fabricated 

in advance of their nuclear heat sources, acceptance-tested by the RTG 

contractor, and shipped to  the capsule contractor facility. There they 

a r e  installed in the capsule and heated electrically during capsule checkout 

and acceptance tests.  

launch site and during all subsequent movements and testing. 

heat sources a r e  assembled at Mound Laboratories and shipped to the 

capsule contractor's facilities for inclusion in final acceptance testing. 

They a r e  then shipped separately to KSC and installed in the generators 

just  prior to canister sealing and sterilization. 

They remain in the capsule when shipped to  the 

Nuclear 

\ 

Three non-nuclear RTG engineering models a r e  fabricated and sub- 

jected to performance and environmental tests by the RTG contractor. 

Two of these units a r e  retained for life testing while the third is shipped 

to  the capsule contractor for use with test  configurations of the capsule 
system. 

' 

6.3 IMPLEMENTATION ALTERNATIVES 

6.3. 1 Feasibility for 1973 Mission 

The basic implementation alternative regarding RTG power for  

Voyager is whether t o  incorporate i t  in the 1973 mission or to wait until 

the 1975 launch. 

ration of RTG power in the initial mission is desirable if feasible. 

basic question of feasibility hinges more on administrative than technical 

factors. That is, if project requirements and inter-agency arrangements 

A s  discussed in Reference 1 and Section 5.3. 1, incorpo- 

The 
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can be settled expeditiously to  allow preliminary design to  be completed 

in 1968, then the detailed design, development, fabrication, and delivery 

could be accomplished by the RTG contractor in support of the capsule 

project a s  shown in Figure 6. 

6. 3 .2  RTG Configuration 

The reference RTG approach utilizes a planar configuration (heat 

rejection in one direction) located within the capsule. 

implications regarding capsule integration and operations. Thus, if 

thermal control, radiation damage, o r  operational problems arising from 

this approach should become evident during detailed system design, other 

configurations such as  non-planar RTG designs can be considered. Planar  

RTG configurations provide design flexibility inasmuch as  they can be 

integrated either directly into the capsule equipment compartment or  

mounted externally. They can be positioned so that a portion of the r e -  

jected heat is effectively utilized in the capsule thermal control system. 

In addition, the planar heat rejection normally results in a simple, 

efficient radiator de sign and heat s ource -the rmoelect r ic  c onve r te  r con- 

figuration. However, an effective insulation and s t ructural  support sys - 
tem must be utilized to avoid heat losses  in all  but one direction, and the 

insulation must function at the highest (least efficient) temperature. 

This has significant 

Non-planar RTG's of interest for  thevoyager capsule include the 

finned cylinder and a modification of the planar configuration with thermo- 

electrics on both sides of a flat plate heat source. 

a cylindrical isotope source t ransfers  heat radially to a surrounding 

thermoelectric converter. 

prevents excessive heat losses.  When the converters a r e  placed on both 

sides of a flat-plate heat block, the insulation and structural  requirements 
a r e  much l e s s  severe than for the planar configuration, and the system 

is  thermodynamically more  efficient. Since the heat f lux  f rom the heat 

source is lower than f o r  an equivalent planar RTG, the isotope capsule 

temperature is lowered, with an accompanying reduction in weight. 

However, the RTG must be positioned to reject heat in both directions 

along a single axis without excessive heat t ransfer  t o  thermally sensitive 

components. 

In the finned cylinder, 

Thermal insulation at the ends of the generator 
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The radiological safety requirement for fuel containment in all 

possible abort situations, particularly aborts leading to  earth re-entry 

and impact, is the most demanding RTG design constraint and has led to  

the recommendation that a high-temperature heat source be developed 

using refractory alloy structures, noble metal alloy claddings, and 

graphitic re-entry sheaths. Although required primarily to  achieve 

inherent, passive re-entry survival capability, such a heat source can 

be operated continuously at high enough temperatures (2000OF) that i ts  

use with a Si Ge thermoelectric converter is advantageous. 

this description represents a n  advanced development but one which is 
considered highly desirable because of marginal safety capabilities of 
the lower temperature superalloy-Pb Te RTG systems which have re-  

ceived primary developmental attention to date. 

An RTG of 

6 .3 .3  Nuclear Radiation Considerations 

Use of the RTG as the flight capsule power source requires judge- 

ments to be made throughout the program as to  the heat source require- 

ments, whether it be the radioisotope o r  a simulator incorporating a 

non-nuclear thermal source. The use of the nuclear source requires 

AEC controls and certifications for safety considerations which adds to  

program complexity and should be minimized consistent with technical 

requirements. 

The f i r s t  use of the radioisotope is planned for  the PTM Electro- 

As an magnetic Interference tes ts  at the capsule contractor's facility. 

alternate proposal, i t  would be reasonable to consider locating these 

tes ts  at an AEC facility such as Mound Laboratory. 

sule system model simulating the electronics systems would be required. 

In this event a cap- 

The use of a nuclear source during capsule acceptance a s  for the 

reference approach may well be eliminated when the comparison between 

this complexity and the adequacy of a simulated source is considered 

in detail. 
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7 .  SURFACE LABORATORY IMPLEMENTATION 

7.1  ROLES AND RESPONSIBILITIES 

The three -generation surface laboratory implementation will be 

car r ied  out by the surface laboratory contractor a s  described in Sec- 

tion 5.1. 
that of integrating experiment packages into a total laboratory and pro- 
viding the structure, mechanisms, and electronic equipment to support 

the experiments. He must accomplish these functions for successively 

more complex laboratories, and implementation must be such that the 

overlapping of the requirements t o  begin development of the comprehen- 

sive precursor  laboratory does not interfere with operations for the f i r s t -  
generation mission. 

The surface laboratory contractor has two principal functions, 

The science definition program for  the surface laboratory will be 
managed by the NASA Voyager Project Office, with direct management 

of the principal investigators by the capsule system management office. 

During preliminary design the system approach for the science program 

is developed in detail. 

t o  ensure maintaining the scientific integrity of the experiment program, 

to direct  participation and control by the principal investigators, to de- 

fine acceptable interface arrangements for  a l l  participants, and to provide 

for  adequate decision-making machinery during system development and 

Mars surface operations. These operating procedures and the definition 

of the nominal surface laboratory define the instrument complement, 

sampling, and processing capability, data processing and analysis capa- 

bility, and generic description of science and experiment types contem- 

plated. 

proposed experiments planned to utilize the specified laboratory capability. 

Operating procedures a r e  established in detail 

Potential principal investigators would respond to R F P ' s  for the 

An initial selection of principal investigators would be made and the 
selected investigators would then participate in the final science defini- 

tion. During this period the group of selected experiments would be 
further defined to' maximize the combined information content and to  

optimize the surface laboratory configuration. 
pal investigators would develop the specific experimental techniques so 

that the step-by-step experimental procedures a r e  available. 

Concurrently, the princi- 

This 
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information establishes the requirements for the corresponding parts of 

the laboratory and defines the operating requirements for the related 

subsystems. 

The principal investigators continue on the program, coordinating 

continuously with the surface laboratory contractor a s  the hardware is 

developed and tested. 

cedures for Mars operations. During the operating life on Mars,  they 

analyze the appropriate scientific data and participate in control of experi- 

ment ope ration. 

They participate in development of operating pro- 

Under the foregoing guidelines, the principal investigators will have 

responsibility for the development of the experimental methods for the 

particular experiments and the design, development, and fabrication of 

instrumentation required to perform the experiments as appropriate. 

surface laboratory contractor wil l  have the responsibility for  a l l  mechan- 

isms required for sample acquisition and deployment as well a s  those 

mechanisms to support experiment packages. 

The 

The implementation of the experiments involves both intersystem 

and subsystem considerations. 

t rac tor  and the principal investigators i s  analogous to  an intersystem 

interface in that the principal investigators have independent contracts 

with NASA. 

science elements have a complex and intimate relationship to  the other 

hardware akinto that of a laboratory hardware subsystem, a fact which 

requires a comprehensive role on the par t  of the laboratory contractor 

for integration of such equipment. As  a corollary, such major support 

elements a s  the equipment for sample acquisition and preparation and the 

data automation equipment should be developed by the laboratory contrac- 

t o r .  
tor is similar to that of the spacecraft contractor a s  discussed in 

Section 4. 3.4. 

The relation between the laboratory con- 

At the same time, the experiment equipment as well as other 

Hence the science integration role of the surface laboratory contrac- 

7.2 IMPLEMENTATION APPROACH AND SCHEDULE 

The gross  surface laboratory project flow for all  missions was 

shown in Figure 4 and in more detail for the initial mission in Figure 6. 
Since it has been assumed that Phase B activities for this system will be 
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the responsibility of the capsule contractor, implementation of this sys - 
t em by the surface laboratory contractor will commence with Phase C. 

The R F P  for this phase should be issued by January 1968 and a contract 

award made about April 1968 if the overall schedule of Figure 4 is to  be 

accommodated. 

While Phase C and D activities, in general, will be s imilar  to 

spacecraft and capsule bus implementation, interface control will become 

a significant e f for t  because of the numerous interfaces between the su r -  

face laboratory, mobile unit, capsule bus, RTG, and the related electro- 

magnetic compatibility a s  well a s  compatibility with the decontamination 
and sterilization cycles must be demonstrated. Therefore, three years 

have been allowed for  the Phase D implementation of this system for the 

first mission. 

contractor in mid- 1972 appears achievable. 
surface laboratory systems will be considerably more complex. 

the 1977 launch date, Phase C activities will be initiated by August 1972 

and Phase D by April 1973. This will permit approximately four years  

for development of the comprehensive surface laboratory configuration. 

Shipment of four surface laboratory systems to  the capsule 

Second and third generation 

To meet 

Since the scientific instruments a r e  likely to be the longest lead- 

time components, it is important that their  development s ta r t  as soon a s  

feasible. 
board nature, during which the fundamental techniques would be estab- 

lished and sterilization compatibility determined. 

functional changes can be accepted with minor impact, a s  long a s  basic 

operating principles a r e  not modified. The prototype designs would be 

based on specific performance requirements, and would be fabricated of 
components that a r e  (short t e rm)  qualified for  sterilization, shock, and 

other environments. 

It is planned that the initial development would be of a bread- 

During this t ime, 

In addition to the same type of development tes t s  planned for the 

capsule bus, the engineering model of the surface laboratory will also 

be used for extensive mission simulation tests. 
operation of the surface laboratory model in a chamber approximately 

duplicating the 10 mb, C 0 2  atmosphere (with the atmosphere model r e -  
vised as  more recent data is available) and the thermal cycling anticipated 

at the projected landing site. 

This will consist of 
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The surface laboratory contractor will provide support to the cap- 

sule contractor during the integration and intersystem testing activities 

conducted both at  the capsule contractor facility and at KSC. 
activity could extend we l l  over a year and hence it has been assumed that 

the surface laboratory contractor will provide permanent teams of person- 

nel at both the capsule contractor's facility and at  KSC, in order  to meet 

the schedules indicated. 

This support 

7.3 IMPLEMENTATION ALTERNATIVES 

Many capsule and spacecraft project alternatives discussed in Sec- 

tions 4.3  and 5.3 apply as well to  the surface laboratory project. As with 
the capsule, the most significant surface laboratory alternatives relate to  

the exploration capability to  be provided versus  the associated implemen- 

tation complexity. The general tradeoff has been made within the frame- 

work of the postulated approach to arr ive at the reference stepwise devel- 

opment. 
mentation investigations a r e  still required to a r r ive  at a specific compro- 

mise between simplification of the first generation instrumentation and 

the required precursor life detection capability. 

Detailed surface laboratory design studies coupled with imple - 
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8. MOBILE UNIT IMPLEMENTATION 

Implementation of a Voyager mobile unit is discussed in this section 

in keeping with ground ru les  of the current study. 

of the study it has not been possible to  c a r r y  out a preliminary design and 

develop a related implementation definition for  such a unit. 

cooperative data exchange between TRW and the AC Defense Laboratories 

of the General Motors Corporation was arranged to  make available data 

f rom the extensive work of General Motors in this area.  This informa- 

tion has served as the basis for the mater ia l  presented below. 

Within the resources 

However, a 

The mobile unit, as a major element of the capsule system, is  

implemented by the mobile unit contractor under the direction and manage- 

ment of the capsule system management office. 

a s  an associate contractor with the capsule contractor and the surface 

laboratory contractor as described in Section 5.1. 

This contractor functions 

8.1 IMPLEMENTATION APPROACH AND SCHEDULE 

The gross  mobile unit project flow for a l l  missions was shown in 

Figure 4 and in more detail for the initial mission in Figure 6.  Because 

the mobile unit has important interfaces with the surface laboratory and 

the capsule bus, extensive interface control documentation will have to 

be generated early in the program. As  in the case of the surface labora- 

tory, the Phase B implementation of the mobile unit will be conducted by 
the capsule contractor. 

Mobile unit implementation will be initiated with the issuance of a 

Phase C R F P  in January 1968. 
in April 1968, and the preliminary design review completed by November 

1968. 
initial tes t  vehicle will be designed to  be compatible with the anticipated 

weights and volumes for the experiment packages to  be used on the ad- 

vanced mobile unit. 

unit structure and drive mechanism can be enhanced by drawing upon the 
initial operational experiences of the ear l ie r  mobile units. 
compatibility is also essential  f rom a schedule point of view since a mini- 

mum of three years is normally required to  develop and quality a mobile 

unit s ys tem. 

Contract award is assumed to take place 

i 
One unique aspect of mobile unit implementation will be that the 

In this way the reliability of the advanced mobile 

The design 



Phase D for this system wi l l  be initiated in January 1969 to assure  

availability of four qualified units at the capsule contractor's facility by 

the first half of 1972. Again because of the numerous interfaces and inter-  
system tes t  requirements, it wi l l  be essential  that the mobile unit contrac- 
tor  maintain permanent support personnel at the surface laboratory con- 

t ractor ,  the capsule contractor, and KSC during the assembly, integration, 

test, and decontamination-sterilization phases. 

It has been assumed that the mobile unit contractor will have decon- 

Hence, taminated his system prior to  shipment to  the capsule contractor. 

f rom that point on, the mobile units will have to be maintained under 

Class 100 contamination control. This will have a significant impact on 
the schedule f rom that point on since handling procedures become much 

more complex after this point is reached in the development phase. 

Phase C for the second-generation mobile unit will be initiated in 

mid-1972. 

with the cr i t ical  design review in mid-1974. 

The associated Phase D will be started immediately thereafter,  

The second-generation mobile unit will be designed to  meet both the 

second and third generation mission objectives. However, because of the 

t ime span involved, the delay of data received from the ear l ier  missions, 

and the normal technological evolution that will occur over a 10-year 

period, some updating, improvements, and modifications will undoubtedly 

be applied to the basic mobile unit, a s  well as its payload, although these 
changes will probably not be of a major nature. 

As shown in Figure 4, data f rom the first mission will not be avail- 

able until early 1974. 

27 months prior to delivery of the second generation mobile unit .for the 

1977 mission. 

without this data, and the project will then have to  react expeditiously as 

discussed in Section 3. 

This is  about 15 months prior to qualification and 

The ear ly  design and development will thus have to  proceed 

8.2 IMPLEMENTATION ALTERNATIVES 

Many capsule and spacecraft project alternatives discussed in Sec- 

tions 4.3 and 5.3 apply as well to the mobile unit project. 

mental alternatives relate to exploration capability versus  the associated 

implementation complexity. 

Again the funda- 

This is exemplified in regard to the inclusion 
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of a test  mobile unit fo r  the initial mission, which obviously complicates 
implementation f o r  the initial mission. However, the inclusion is felt t o  

be justified in order to obtain tes t  experience and a developmental base to  

support implementation of the advanced mobile unit, which is believed to  

be essential  for  the ultimate advanced mission exploratory capability. 

The advanced mobile unit and the test  mobile unit of the reference 

approach are both restricted to operation with line of sight to  the lander, 

This enables communication with ear th  by relaying through the lander 

either by RF or w i r e  link. Low power requirements for communications 

and low energy requirements per t raverse  for locomotion permit the use 

of rechargeable batteries on the mobile unit to supply all power and energy 

needs. 

Operation beyond line of sight of the lander poses considerably more 

difficult problems, but offers concomitant scientific advantages. 

R F  nor wire link to the lander can be used, therefore requiring direct 

communication to  ear th  f rom the mobile unit or relay through an orbiter,  

the latter being undesirable because of limited orbiter availability and 

added reliability problems. 

power and a high-gain antenna which must be oriented each time data 

transmission is desired. 

rates will be relative low. 

Nevertheless, the scientific advantages of wide a rea  coverage war-  

Neither 

This leads to  requirements for much greater 

Even with such measures it appears that data 

rant serious consideration of this alternative. 

a few hundred feet of the lander a r e  quite likely to  encounter fa i r ly  homo- 

geneous conditions. The major advantage gained by mobility in this range 

is to  get away from landing site contamination. Wide a rea  coverage is 

considerably more likely to encounter variations in both te r ra in  and 

physiochemical conditions. 

line of sight, virtually unlimited range capability is conceivable. 

inability to return regularly to the lander for battery recharge requires 

a prime energy source on the mobile unit (most likely RTG) for battery 

recharge, the batteries themselves being used only for  peaking power. 

Operations conducted within 

Once the autonomy is provided to  go beyond 

The 

Of course,  all of this is costly both in t e r m s  of weight and mission 
time needed for antenna orientation or because of reduced data rates.  The 
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loss  of time may be partly compensated by providing more control autonomy 

on the vehicle ranging from preprogrammed path plans, commands, and 

contingency strategies, t o  adaptive and learning systems embodying sto- 

chastic decision processes.  

Such approaches can only be justified in t e rms  of the tradeoff be- 

tween the weight, cost, and complexity needed to  supply the long range 

mobility versus the scientific gains to be realized by wide a rea  coverage. 

One such mobile unit which has been considered has a gross  weight of 

about 900 pounds. 

an overall length of approximately 12 feet. 
It car r ies  130 pounds of scientific instruments and has 
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9. LAUNCH VEHICLE IMPLEMENTATION 

The launch vehicle system is implemented jointly by the Voyager 

shroud contractor and the various contractors for  the standard Saturn V 

booster under the overall management of the launch vehicle system 

management office. 

of these contractors is delegated to the MSFC Saturn V Project  Office 

in support of the launch vehicle SMO. 

Technical direction and contractual administration 

9 .1  SATURN V BOOSTER 

The launch vehicle system for the Voyager program, excluding 

the shroud system, i s  assumed to be a standard "off-the-shelf" version 

of the Saturn V booster. There may be slight modifications required 

to the Saturn IVB and the instrument unit to make them compatible with 

the Voyager requirements, and flight dynamics studies will be required 

by the S-IC contractor. 

will have been identified b y  the Phase C activities of the spacecraft 

and capsule contractors. At that time contract change notices would 

be issued to these contractors for implementating the required work. 

It has been assumed preliminary design will have been initiated by 

November 1968. A preliminary design review will be conducted in 

May 1969 and a critical design review in the f i r s t  quarter of 1970, coin- 

cident with the CDR's for all the other major  Voyager systems. 

It has been assumed that by mid-1968, these 

Following approval of these modifications by the Voyager project 

office and the launch vehicle SMO, fabrication of the S-IC, S-11, and 

S-IVB stages and the instrument unit would commence. 

no difficulty fo r  the launch vehicle project segments in meeting Voyager 

schedule requirements. 

bility testing in  support of the f irst  mission, followed by prelaunch 

operations. Subsequent missions will only require preparation for 

flight. 

There should be 

The schedule calls for launch s i te  compati- 
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9 . 2  SHROUD IMPLEMENTATION 

Implementation of the Voyager shrould as a new element of the 

launch vehicle system will be carr ied out by an associate contractor 

under the cognizance of the launch vehicle SMO. 

R F P  is issued in early 1968, it is estimated that a contract award would 

take place in April 1968. 

in keeping with the other major Voyager system PDR activities. 

Phase D would commence at the start of 1969 and a CDR would be held 

by March 1970, to coincide with similar activities for the other major 

systems. Since the outside diameter of the cylindrical sections of the 

shroud system a r e  identical to that of the S-IVB stage, it has been 

assumed that much of the tooling and fixtures developed for this stage 

can be used on this system. This factor has been taken into account 

in scheduling this new addition to the overall launch vehicle system. 

Assuming a Phase C 

A PDR would be conducted by December 1968 

The first flight-configured shroud system for the 1973 mission 

would be manufactured, checked out, acceptance tested, and shipped 

to KSC by mid-1972, o r  later as required. 

would be integrated with two flight planetary vehicles as par t  of launch 

site compatibility testing. 

shroud system is checkout for compatibility with the Saturn V booster. 

The shroud contractor will provide support as required during launch 

site operations. 

dized element of the launch vehicle system, no major schedule problems 

a r e  anticipated for  the implementation of additional systems for the 

future missions. 

A t  KSC the complete shroud 

An additional activity associated with the 

Because the shroud system will become a standar- 
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10. LAUNCH OPERATIONS 

The launch operations system manager is responsible to the 

Voyager mission director for space vehicle prelaunch and countdown 

and for launch vehicle flight through injection into an  ear th  parking 
orbit. In particular, he is responsible for  launch readiness of the 

space vehicle, ground crews, and launch complex facilities and equip- 

ment as required to meet the critical Voyager launch window require- 

ment. 

as well as operational execution. 

provide facilities and related support for  spacecraft, flight capsule, 

and planetary vehicle prelaunch operations. 

The manager car r ies  out launch operations development activities 
He also coordinates with KSC to 

10. 1 LAUNCH SITE ACTIVITIES 

Voyager operational launch site activities commence with ship- 

ment of flight hardware to the launch site and end at the completion of 

space vehicle earth orbit injection. The operational flow, shown in 

Figure 7, includes shipment to Kennedy Space Center, receiving 

inspection, assembly and checkout, final prelaunch preparations, space 

vehicle integration, terminal countdown, launch, powered flight, and 

earth orbital injection. All  facilities, personnel, and software for each 

Voyager mission must be in a mission support posture at the start of 

the operational phase. 

s t ra tes  mission readiness and then participates in  a total combined 

systems operations demonstration. 

a total system through a simulated Voyager mission. 

Each major system support element first demon- 

These elements a r e  exercised as 

After the spacecraft and capsules have completed prelaunch 

checkout in  facilities provided for this purpose, they will be taken to 

the explosive safe a rea  for assembly and checkout. The a rea  will con- 

sist of a high bay a rea  approximately 100 x 140 x 90 feet high incor- 

porating a 40 x 70-foot air lock at one end. 

incorporates a special sealed chamber to conduct E T 0  decontamination 

of the planetary vehicle-shroud assembly. 

The high bay a rea  also 
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Two planetary vehicle-shroud assemblies a r e  transported to the 

Mechanical and electrical launch pad and mated to the launch vehicle. 

connections will be made and electrical continuity test  conducted. 

After individual planetary vehicle sys tem checkouts, the two vehicles 
a r e  operated together to check for  interference. 

then mated to the forward shroud section interface structure for 

mechanical alignment checks of the total assembly. 

required between the launch vehicle and planetary vehicle will  be exer- 

cised and system performance evaluated. After successful completion 

of the compatibility test  a countdown readiness test  will be conducted. 

After the Voyager mission readiness condition is obtained f rom the 

Voyager mission director, the space vehicle test  conductor initiates 

the final countdown sequence, 

The nose fairing is 

Discrete signals 

10.2 SALIENT FEATURES AND ALTERNATIVES 

The Voyager planetary quarantine requirement has a strong 

impact on launch operations. The heat sterilization cycle for the 

capsules and the surface decontamination and encapsulation of the 

planetary vehicles a r e  complex innovations with many ramifications 

in facilities, support equipment, procedures, and personnel training. 

The requirement that class Fed 209-100 clean rooms a r e  utilized 

for capsule operations and class Fed 209-100,000 clean rooms a r e  

utilized for spacecraft and planetary vehicle prelaunch operations also 

represents a complex innovation. In addition, all transportation and 

handling of capsules, and spacecraft outside of the clean rooms will 

be in environmentally controlled protective covers , to prevent 

contamination of the units. 

An important feature of Voyager launch operations is the pro- 

visioning of a flight-ready encapsulated planetary vehicle as a spare  

in case a pr imary art icle develops unexpected difficulties during any 

phase of final space vehicle checkout, countdown, and launch operations. 

The interchanging of the complete planetary vehicle-shroud assembly 

module will expedite overall checkout operations and will aid in 

achieving the required 20-day launch window. 

capsule will be processed to a flight-ready condition for recycling ESA 

An additional spare  
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operations on the unit returned from the pad, to create  a new flight- 

ready spare. Further study is required on the feasibility of such an 

arrangement to justify the expense of a fourth flight capsule. 

Another important feature is the policy allowing replacement of 

only assembly modules a t  the launch site and not components. 

will aid in reducing the total maintenance time for faulty components a t  

the launch site. 

equipment by the elimination of fault isolation a t  the component level. 

Thus fault isolation to the component level will be relegated to specia- 

lized checkout equipment a t  the factory, where the failed module will 

be sent for final repair .  

This 

It wi l l  also reduce the complexity of the checkout 

As noted in the launch site operations flow, all operations on any 

given segment of the vehicle such a s  the capsule or spacecraft a r e  

staggered between each of the separate end i tem capsules or  spacecraft. 

This enables one checkout s e t  to be utilized, thus cutting overall check- 

out equipment requirements to a minimum. Contingencies a r e  allowed 

for in the staggered operations and many of the checkout features can 

be accomplished on a noninterfering basis with each succeeding capsule 

or  spacecraft. 
equals two for the capsule and two for the spacecraft, with the capsule 

and spacecraft checkout si te combined in the explosive safe  a rea  for 

planetary vehicle operations. 
ment of checkout equipment malfunctions will be applied in the same 

manner applicable to flight hardware. 

Total checkout se t  requirements a t  the launch site 

The spare module concept for replace- 

Fueling operations which a r e  conducted in the explosive safe 

facility will enable fueling of the spacecraft prior to shroud encapsulation 

and E T 0  decontamination. This eliminates fuel line umbilical connec - 
tions through the shroud to the spacecraft, which then would require 

separation of umbilicals during shroud - spacecraft separation opera - 
tions af ter  injection into the Mars transfer trajectory. 

The general policy for Voyager launch operations for the 

reference approach is to utilize key members of the tes t  team which 

performed the operations on a particular flight art icle during factory 

checkout and acceptance to perform operations on this art icle a t  the 
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launch site. 
the vehicle and prelaunch operations and reduce the time to perform 

preflight checkout operations. 

This will enable the launch site team to be familiar with 

Launch vehicle to planetary interface checks a r e  associated 

directly with shroud encapsulation rather than with mating of the shroud 

to  the Saturn V booster. 

required in  the VAB during shroud-booster checks, but can be replaced 

by suitable simulators. 

Hence the planetary vehicles a r e  not 

In contrast to the reference on-pad mate, mating the two plane- 

t a r y  vehicle shroud assemblies is possible in the VAB, similar to the 

operations now utilized for the Apollo program. However, there a r e  

a number of potential problems in mating the planetary vehicle-shroud 

assemblies in the VAB, entailing safety features and required facility 

modifications. Several safety restrictions now exist in  the VAB rela-  

ting to pyrotechnics, fueling, etc. If the spacecraft is fueled prior to 

mate of the planetary vehicle-shroud assembly in the VAB the safety 

problems must  be investigated as well as the effect of the weight of 

the fueled planetary vehicle-shroud assemblies on the launch vehicle 

and associated facilities and equipment in the VAB. 

planetary vehicle-launch vehicle in the VAB eliminates final system 

checkouts and mating of the planetary vehicle-shroud assemblies with 

the Saturn V for the first time when they arr ive on the pad. 

the total on-pad time is reduced for this concept. 

facility and equipment modifications will require investigation, such 

as the modifications required to the VAB vertical assembly bay work- 

stand crane hook heights, crane weight capacities, etc. Also an 

investigation is required to determine the dynamic effects upon the 

mobile crawler transporter’  if a fully loaded planetary vehicle-shroud 

assembly is installed and moved with the launch vehicle to the pad. 

Mating of the 

Hence 

A number of detailed 

Tradeoff studies should be conducted to determine alternative 

modes of operation for fueling the spacecraft. 

calls for spacecraft fueling in the explosive-safe a rea  prior to encap- 

sulation in the shroud. Impact 

The reference approach 

A number of alternates a r e  available. 
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upon the spacecraft and shroud design would resul t  i f  fueling follows 

planetary vehicle-shroud encapsulation. This will involve a fuel line 

umbilical f rom the shroud to the spacecraft  which will require either 

in-flight o r  remote disconnection. 
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11. MISSION OPERATIONS 

The Voyager mission operations system management office is 

responsible to the Voyager mission director for  mission operations 

facilities, equipment, software, and associated personnel to support 

the Voyager mission. 

mission-related activities from earth parking orbit injection through 

the end of Mars operations. It also covers MOS prelaunch activities 

in  support of the LOS and planetary vehicle monitoring and evaluation 

for the ascent flight phase. 

overall responsibility for the developmental and operational activities 

associated with mission operations, including activities of supporting 

organizations. This includes all activities associated with Voyager 

MOS analysis, system design, development, and procurement. He 

will exercise control of all elements of mission operations and will be 

responsible for coordinating the associated elements. 

This responsibility covers in particular all 

The MOS manager therefore has an 

11.1 GENERAL APPROACH 

Operations in support of the Voyager missions will begin in 1973 

and extend beyond 1984 for the three-generation program, a period 

approximately equal to a full generation in the evolution of ground 

operational complexes. 

must begin immediately and be directed toward an approach which will 

embody operational methodologies, equipment, and software that a r e  

sufficiently advanced to survive the next generation of technological 

advancement and hopefully t o  establish the pattern for flight operations 

during that era .  

Thus the planning for  Voyager flight operations 

Much has  been done over the past decade in  organizing the world- 

wide tracking networks for simultaneous support of the maximum 

number of space systems, and steps have been taken toward standardiza- 

tion of equipment, facilities, communications, and operational procedures. 

In recent years  progress has been made in formalizing the '!central 

point of control11 concept in Spaceflight operations. 

previously dedicated to research and development have matured in their 

new roles of multiple project support of operational spaceflight programs. 

In expanding to this new role they have developed the configuration 

Tracking networks 
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management, standardization of procedures , and interface c ontr ol 

practices required for effective implementation of simultaneous 

multiple mission support. 

The Voyager mission operations planning should endeavor to 

further the progress which has  been made along these lines. 

the increasing number of space projects which must be supported by the 

tracking networks, spacecraft system design should consider the 

problems associated with multiple project support in implementing the 
flight systems. To the maximum practical extent the flight and ground 

systems should be designed for periodic as opposed to continuous coverage 

by the tracking networks. 

Because of 

This concept can be enhanced by: 

I 0 Utilizing high communication data ra tes  

0 Design of communications equipment to 
minimize the time required for acquisition 
of the space-to-ground and ground-to-space 
links 

F r o m  the standpoint of ground operations, Voyager is the ideal 

project to maximize the use of automation in the interest  of operational 

efficiency and cost effectiveness. 

t o  manned spaceflight operations will not apply to Voyager so far as 

mechanizing operational de cisions a r e  c once r ned. Fu r  the r, because 

of the long operational life of the Voyager system and its complexity, 

the maximum yield in cost effectiveness f rom computer control in 

elimination of personnel functions can be realized. And finally the 

possibilities for interrelation of activities between the various Voyager 

vehicles after arrival at Mars  can be exploited through the use of 

Many of the constraints which apply 
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0 Providing storage capacity in spacecraft 
systems to preserve data during periods 
of limited ground coverage 

0 Transmission of commands in blocks to 
update space command programmers at 
periodic intervals and minimize the number 
of acquisitions for individual command trans - 
missions 

0 Bandwidth conservation through the use of 
e r r o r  correcting codes so far as is consis- 
tent with inc r e as e d equipment complexity 



simultaneous monitoring and correlating data by ground computers. 

Voyager system design should adhere to the principles of maximum 

information yield in the shortest practical time with minimum data flow 

and storage. 

of this concept. 

The following measures should be considered in support 

Self adaptive telemetry systems and data compres- 
sion techniques should be utilized wherever possible 
to minimize transmission of redundant and unneces- 
sa ry  data. 

The ground data system design should provide for 
near real-time processing and display of all opera- 
tional data (both engineering and scientific) which 
can contribute to optimizing the scientific mission, 
improving the performance of the planetary vehicles, 
prevent degradation to some element of the system. 

The necessary data quality assessment capability 
should be designed into various elements of the 
system faults from anomalies in spaceflight hardware. 

The necessity for collection of large quantities of 
raw archives data should be avoided by: 

0 Use of digital recording at the Deep Space 
Stations and development of a data processing 
system capable of fully processing all data 
for distribution to users  on a daily basis as 
the data is received, thus eliminating handling 
of analog instrumentation tapes except in  cases 
of temporary malfunction 

0 U s e  of on-line engineering analysis teams and 
science analysis teams with real-time computer 
support to sor t ,  sift, collate, and analyze the 
data and to  generate the performance analysis 
reports.  
of large backlogs of data and will provide the 
expeditious reporting necessary for feedback 
into mission planning and system design for the 
subsequent mission on a two-year launch cycle. 

This will help prevent an accumulation 

The most demanding requirements for the mission operations 

system and the tracking and data acquisition system stem from supporting 

the long stay surface laboratory. Therefore, the initial design should 

provide the capability for full support of these ultimate requirements 

except in  those cases  where extension capability can be designed into 

the system to provide for later growth with negligible effect on the 
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system in existence. 

changes to the operational systems during the life of the project. 

Even though this approach may lead to excess capability for the more 

simplified early missions, as long as  this excess capability i s  not 

activated prematurely the residual costs associated with maintenance 

of the excess capability ear ly  in the program should be small compared 

to the cost associated with significant changes to the operational systems 

between Voyager generations. 

capability will be phased over the life of the program in accordance with 

the success achieved in scientific discoveries during each mission. 

The basic design goal i s  to avoid large,  costly 

Activation of the full mission operations 

Readiness to  support a Voyager flight will be assured by a sequence 

of three implementation phases. 

basic policies of Voyager mission operations by specifying the broad 

guidelines for MOS preflight planning and de sign, flight operations 

support, documentation, scheduling, computer program de sign, develop- 

ment, and maintenance control activities. Guidelines for the procure- 

ment of mission-dependent equipment a r e  developed. 

software configuration control practices a r e  delineated, internal and 

external MOS interface control procedures a r e  defined, and detailed 

requirements are imposed upon various MOS elements to assure  system 

operational readiness at the required time. 

The first will consist of establishing 

Preliminary 

The second MOS phase consists of development of operations pro- 

cedures, the preparation of test  instructions and data packages, 

development and integration of computer programs, and the fabrication, 

delivery, and system integration of mission-dependent equipment. 

The third phase corresponds to a comprehensive system test  

and training program fo r  all personnel and mission-dependent equipment. 

The achievement of operational readiness status will be consistent with 
all mission schedules. 

1 1 . 2  IMPLEMENTATION ALTERNATIVES 

The basic tradeoff between exploration capability and system 

complexity has strong implications on mission operations. 

aspect relates to the high data ra te  and the concomitant data handling 

requirements. In this regard, the high data ra te  can also be utilized 

One particular 
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to  reduce periods of coverage by the ground system, in  exchange for 

l e s s  total transmitted data. 

During certain mission phases, DSIF station complexes can be 

used to divide the tracking, command, and telemetry data handling 

functions between two Deep Space Stations rather than having a single 

station service all functions. 

tion will require additional complexity but can provide for a more 

balanced operational loading when both stations of a given complex are 

available to t rack Voyager. 

single station at each complex to service all data handling requirements 

from both vehicles during periods of extended maintenance or multiple 

project conflict causing one of the stations in a two-station complex to 

become unavailable. 

which reduces effective radiated power or during periods of extended 

range operations the 2 1 0-foot antenna station at each complex may be 

the only station capable of servicing the Voyager vehicles. 

To provide this alternate mode of opera- 

However, the capability must exist for a 

Furthermore in the event of spacecraft malfunction 

A significant feature of the reference approach is the use of 

alternate modes of operation for the major data handling function 

associated with tracking, telemetry, and command data. During periods 

of high activity such as maneuvers and mapping activity the direct  

coupled computer system at the SFOF is operated on-line for near 

real-time processing of data and commands. 

activity such as cruise mode operation or i n  the event of unavailability 

of the direct  coupled c o m p t e r  system at the SFOF, the Deep Space 

Station computer will have an alternate program which will allow minimal 

processing of data and generation of commands under control of the 

SFOD at SFOF but independent of the SFOF equipment and high speed 

communication lines. 

into the system which allows intermediate level processing of telemetry 

data through use of the telemetry processing station at SFOF while 

commanding through the station computer. 

level of data processing in real-time than can be achieved via the 

station computer and at the same time relieves the direct coupled 

computer complex, providing a means of accomplishing all routine 

mission functions during noncritical phases. 

During periods of low 

A tert iary mode of operation will be designed 

This mode permits a higher 
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Organization of the functional analysis and command teams at the 

SFOF may employ slight alternatives f rom the organization of the 

reference approach. 

centralization for command activities than presently employed at the 

SFOF through the use of a command coordinator at the staff level to 

the SFOD, rather than having this function reside in the various 

functional support areas .  

of the supporting analysis and command groups is to incorporate the 

apace science analysis and command group into the planetary vehicle 

performance and command group. The functions of science analysis 

and command recommendations for each of the science payloads 

(spacecraft, capsule, and surface laboratory) can thus perform their 

activities in close coordination with engineering analysis functions. 

The reference organization utilizes more 

A further step toward overall centralization 
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12. TRACKING AND DATA ACQUISITION SYSTEM 

12.1 SCOPE AND FUNCTIONS 

The tracking and data acquisition system management office, under 

the direction of the tracking and data acquisition system manager, is r e -  

sponsible to  the Voyager mission director for acquiring Voyager tracking 

and telemetry data and transmitting commands, 

the following functions in support of the Voyager mission: 

The TDAS will provide 

Track the space vehicles and provide metr ic  
tracking data 

Receive, record, and relay telemetry data f rom 
the space vehicles 

Transmit commands from the operations teams 
to the space vehicles 

Provide station performance parameters which 
a r e  required for analysis and evaluation of 
vehicle pe rf ormance 

Provide and maintain a l ibrary of master data 
records developed during each flight 

Provide acquisition data required by tracking and 
data acquisition stations 

The Voyager project will make use of selected stations and equip- 

ment of the AFETR, the NASA networks managed by the Goddard Space 

Flight Center, and the DSN. 

undergoing continual development, Voyager will undoubtedly use the new 

capabilities to  meet requirements as stated in the program and support 

instrumentation requirements documents. 

Since the range and the NASA networks are 

For  Voyager the AFETR will t rack the launch vehicles, receive 

telemetry from the launch vehicle, each spacecraft and each capsule, 

and provide data handling support during the near-earth Voyager opera- 

tions. Instrumented 'aircraft, ships, and range stations will t rack the 

vehicle f rom launch to  provide metr ic  and telemetry data. These air- 
craft-, land-, and ship-based systems will be linked with the KSC and 

the SFOF during near -earth operations. 
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The MSFN, either through its own stations or  those of other net- 

works managed by the GSFC, will provide metr ic  and telemetry coverage 

to supplement AFETR coverage during the phase f rom liftoff to  planetary 
vehicle injection. Selected MSFN stations may be used to provide cover- 

age for gaps which exist either in the AFETR or  the DSN in meeting project 

requirements. 

12.2 SYSTEM OPERATIONS 

TDAS operations may be grouped into flight preparation, flight sup- 

port, and postflight activities. 

planning, design, development, procurement, integration, and testing 
a r e  performed t o  assure  system operational readiness. 

includes tracking, data acquisition, data handling, and participation in 

mission operations. 

formance evaluation and flight navigation data processing. 

12.2.1 Flight Preparation 

During flight preparation all necessary 

Flight support 

Postflight TDAS activities encompass system per-  

Normally, requirements for support by network resources a r e  
documented in a project support requirements document. 

welding of the major elements of the TDAS into a functional unit will 

occur by means of a comprehensive training and test  program. 

program comprising three basic categories of tes ts  will be implemented 

to  t ra in  mission personnel and to verify that the equipment and operational 

capabilities of the TDAS a r e  adequate for Voyager. 

The final 

A master  

Internal facility t e s t s  will establish that support facilities function 

properly. 

a r e  functionally compatible with each Voyager vehicle and with each other. 

Finally, operational readiness tests will ensure that all elements of the 

TDAS operate together by demonstrating readiness to support space 
operations. 

Functional compatibility tes t s  will ensure that the facilities 

The TDAS manager will insure that all AFETR, DSN, and MSFN 

The elements a r e  properly configured to support the Voyager project. 
TDAS management must consider a large number of project activities of 

varying priorities. 

to  the project manager. 

When necessary,  alternative plans a r e  recommended 

All of the work at all of the stations and at the 
I 

SFOF is  scheduled by the TDAS scheduling office. 
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12.2.2 Flight Support 

During the in-flight phase the TDAS provides in-flight navigational 

information to  the project. 

functional relationships a r e  a s  follows : 

After planetary vehicle injection the essential 

The Deep Space Stations take precision doppler measure- 
ments by transmitting a signal to the space vehicle which 
is returned by means of a turn-around transponder. 
ing information and range data may also be derived. 

Point- 

Measurements from the Deep Space Stations a r e  t rans-  
mitted to  the SFOF. 

The measurements a re  analyzed, edited, and processed 
to improve previous trajectory estimates.  

The monitor a r ea  provides a la rms  and recording equip- 
ment to  monitor the status of the stations, SFOF, and 
data s t ream. 

Antenna pointing data is generated for the Deep Space 
Stations for succeeding acquisitions of the spacecraft. 

The improved orbit estimates a r e  given to the trajectory 
group. 
pr o je ct . 

This group then analyzes the trajectory for the 

During the flight maneuver and orientation, analyses 
a r e  performed to determine how best to achieve mission 
objectives. 

The inputs from maneuvers a r e  sent to the SFOF, where 
the commands a r e  then formulated. 
on space vehicle maneuvers and space vehicle perturba- 
tions a r e  also fed into the data analysis and orbit process 
to account for  apparent trajectory anomalies and to predict 
correlations. 

Inputs f rom the SFOF 

12.2.3 Postflight Activities 

After flight operations, in-flight TDAS performance is re -evaluated, 

data is validated, astrodynamic constants determined, and recommenda- 

tions for improvement of TDAS performance in support of future Voyager 

missions are submitted to the Voyager project manager. 

Data is edited by inspecting station records,  space performance and 

command group reports,  the interim monitor program, and operations 
records,  in addition to the orbit program plots and residuals. 

racy of the orbit program often makes it the final arbi t ra tor  as to  whether 
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data a r e  good or bad. 

process a r e  tied together in an iterative process.  

anywhere from 1 month to 1 year after the flight, is to: 

Thus, the data editing and the orbit determination 

This effort, extending 

0 Provide the project with a "best estimate" of the 
trajectory 

0 Provide better estimates of physical constants 
and station locations 

0 Provide data analysis for inherent accuracy and 
applicability 
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13. MISSION ANALYSIS AND ENGINEERING 

Project-level mission analysis and system engineering a r e  essential 

t o  meet the operational challenges of the Voyager missions. Orbits, t r a -  

jectories, and mission sequences need to be studied f rom a viewpoint en- 

compassing al l  Voyager systems to the end of assuring that project goals, 

particularly the scientific objectives, a r e  attained in the correct  and pre-  

determined manner. 

To insure uniformity of approach and to  provide the necessary system 

engineering support to  the project manager, an office of mission analysis 

and engineering at  the project level appears to be essential. 

this office encompasses the following: 
In particular 

Identification of LOS, MOS, and TDAS opera- 
t ional c on s t r a int s 

Planning and design of mission rederence 
trajectories 

Definition of targeting specifications for mission . 
maneuvers 

Development of guidance, targeting, and naviga- 
tion software for  mission maneuvers 

Evaluation of mis s ion feasibility 

Determination of the sensitivity of the trajectory 
to  system e r r o r s  and mission parameters 

Preparation of launch support information for 
launch approval and the generation of operational 
range safety aids 

Generation, maintenance, and dissemination of 
official mission-related vehicle and system data 

Preparation of operational flight data. 
sion design and analysis effort includes specifying 
inter face contr ol documentat ion, r e  solving s ystem 
interface conflicts, and managing intersystem 
integration engineering activities in relation to  
flight ope rat  ions. 

The mis- 
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1 3 . 1  MISSION OBJECTIVES 

It is necessary to define the Voyager mission and flight objectives 

so that a uniform set of goals can .be established for all phases and project 

interfaces. 

a guide established for  the design of all operations. 

Significant performance requirements must be specified and 

The Voyager objectives require an orderly program of continually 
improving knowledge in science and technology. 

program include: 

The aspects of such a 

0 Scientific and engineering observations and experi- 
ments directed towards extending the capability of 
Voyager to operate near M a r s  and on the Martian 
surface, and efficiently developing this capability 
throughout the duration of the Voyager project 

0 Scientific and engineering observations and experi- 
ments directed toward extending the capabilities of 
the scientific instruments to operate near Mars and 
on the Martian surface, more specific definition of 
future experiments concerning exobiology and plan- 
etology, and the efficient development of these capa- 
bilities throughout the duration of the Voyager project 

0 Scientific observations and experiments concerning 
possible biology and biochemistry of Mars 

0 Scientific observations and experiments concerning 
the physics and chemistry of the Martian surface 
and atmosphere directed toward obtaining informa- 
tion essential to  the advancement of planetology 

A major function is to establish the Voyager operational require- 

ments and to  insure that the necessary resources a r e  committed to  sup- 

port the Voyager missions. 

offices, this organization insures that a l l  interfaces a r e  properly effected 

and that the planning and scheduling of operational personnel, hardware, 
software, and facilities is as  required. To c a r r y  out such activities a 

flight operations working group is to be established at  the project level 
under the chairmanship of the MA and E manager. 

consist of members from each Voyager SMO, each NASA and DOD man- 

agement or interfacing agency, and members f rom al l  major contractors. 

In particular, science payload considerations should be represented by a 

science coordinator from the spacecraft, capsule, surface laboratory, 

Working through the systems management 

The group should 
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and mobile unit contractors to coordinate the matters related to  science 

experiments for  their respective systems. 

13.2 MISSION FEASIBILITY EVALUATION 

The feasibility of each Voyager mission needs to  be evaluated by 

defining the individual vehicle performance capabilities and projected 

maneuver dispersions. Each vehicle is analyzed as to  i ts  ability to per-  
f o r m  the requisite maneuvers, and each performance capability is docu- 

mented separately, including an associated dispersion analysis. One 

document will be issued t o  summarize the effects of all system e r r o r s  

upon mission success.  

13.3 TRAJECTORY PLANNING AND DESIGN 

Trajectory planning and design will provide planning and design 

information for launch, mission, and tracking operations; specify t r a -  

jectory design requirements and guidelines; official mission and t ra jec  - 
tory data in a coordinated format; and design characterist ics of the tra- 
jectories and powered flight maneuvers. 

Cri ter ia  for the selection of Mars  landing sites a r e  presented and 

justified. Trajectory constraints, shaping cr i ter ia ,  and design guidelines 

a r e  presented for each mission phase f rom prelaunch to postlanding opera- 

tions. Design targeting specifications a r e  issued for operational trajectory 

development, prelaunch operational targeting, and preflight computation 

efforts. 

The trajectory analye e s define the launch- to  - mis s ion - complet ion 

trajectory characteristics; establish requirements for all vehicle maneu- 

vers;  present pertinent mission and vehicle information; demonstrate 

the extent to  which the trajectories a r e  within allowable design limits; 

and provide planning information for launch operations and tracking 

station support. 



14. FUNCTIONAL MANAGEMENT 

14.1 PLANETARY QUARANTINE 

A s  discussed in the JPL document, "Planetary Quarantine Plan, 

Voyager Project, I I  revised January 1, 1967, a basic policy in the NASA 

program for exploring Mars is to quarantine the planet f rom te r res t r ia l  
l ife forms until adequate time has passed for  exobiological studies. 

quantified constraints that this objective places on the Voyager project 

a r e  as specified in  the  quarantine plan. 
types of activities need to be undertaken in the Voyager project: studies 

and implementation of techniques for prelaunch sterilization and con- 

tamination avoidance and s tudies and implementation of mission opera- 

tions to avoid the possibility of impact of unsterile particles on Mars. 

The 

To meet these objectives two 

Although under nominal circumstances during the Voyager mission 

only the capsule will make physical contact with Mars,  the studies that 

precede the formulation of the precise mechanisms for quarantining the 

planet need to incorporate the spacecraft as well. 
spacecraft engine during midcourse and orbit-injection firing and from 

attitude-control jets during interplanetary cruise and orbit operations 

can conceivably reach Mars. 

can eject material from the surface which can enter trajectories that 

impact Mars. 

operations can be overlooked in  the studies of the means to achieve 

quarantine. 

Exhaust from the 

Micrometeoroids striking the spacecraft 

In short, no portion of the planetary vehicle or  its 

Following an initial s e t  of studies and experiments, the Voyager 

monitoring, control, and capsule sterilization procedures will be 

detailed in a formal sterilization plan compatible with the planetary 

quarantine plan. When it is approved, the sterilization plan will be 
the controlling document fo r  sterilization procedures. 

cover: 

The plan will 

0 Mathematical models for predicting the 
probability of contamination f rom all sources 

0 Sterilization facilities and operating procedures 
and techniques 
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0 Means for  preassembly sterilization, assembly in 
a quarantine assembly facility, heat sterilization 
following assembly, and maintenance of the integrity 
of the sealed capsule canister 

14.2  DATA MANAGEMENT 

The Voyager data management program will serve to define and 

implement all data needed for the project, to see that required data.is 

available when needed and is accurate and adequate, but that no data is 

handled which is not essential. 

NASA data management system established for the Apollo program and 

described in NPC 500-6. 

The program will be based on the 

Primari ly  responsible f o r  the Voyager data management program 

will be the data manager on the staff of the project manager for  adminis- 

tration and control. The responsibility entails : 

0 The analysis of project data requirements and the 
specification of content, form, distribution, and 
related factors 

0 The development, implementation, and monitoring 
of systems and procedures for the identification, 
definition, generation, preparation, production, and 
reproduction of project data 

0 The generation, preparation, production, reproduc- 
tion, and distribution of selected project data 

0 The review of data to be released f rom o r  approved 
by project elements to ensure that all review steps 
have occurred and that the data a r e  consistent with 
the overall project data program 

0 The development, implementation, and monitoring 
of systems and procedures for the acquisition, 
receipt , recording , routing, indexing, storage, 
retrieval, and transmittal of data 

14.3 CONFIGURATION MANAGEMENT 

A formal system of configuration management will be used by the 

Voyager project, based on NPG 500-1, to assure  that equipment is 

accurately defined at all times and to promote an orderly evaluation of 

changes in equipment throughout the program. The system will entail 
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administrative control of the technical requirements documents and 

changes thereto, in  coordination with the data management system. 

P r imary  responsibility fo r  configuration management will  be given to 

the configuration management office in the staff of the manager for 

adminis t r ation and c ont r 01. 

Following the Voyager Configuration Management Manual, five 
types of activities will  be provided in the configuration management 

program: 

1 ) Uniform specification program 

2) Configuration baseline management 

3 ) Configuration identification 

4)  Configuration control 

5) Configuration accounting and reporting 

In addition, the program will provide for complete computerized t race-  

ability of drawings, parts lists, and all other equipment-related docu- 

ments and the interface control specifications as they affect the configura- 

tion. 
a single-point release of configuration data and approved changes, 

with change approval authority clearly defined. 

F o r  all project elements and contractors the program will provide 

The foundation of the configuration management system is the 

concept of baseline management, achieved by establishing and managing 

formal baselines o r  points of departure at major commitment points in 

the project schedule. 

project will serve as  configuration management reference points to  

control the evolution of design documentation and the hardware. 

14.4 PROJECT CONTROL AND REPORTING 

Baselines and formal reviews on the Voyager 

The Voyager project scheduling and resources  management system 

will  provide schedule information, contractors'  resource data, and t ime- 

cost  data for management control purposes. 

status w i l l  be displayed in  the Project  Control Room. 

Project  and system level 

A l l  reporting of 
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resource data will be against the work breakdown structure;  PERT net- 

works and fragnets will correspond to specific items in the work break- 

down structure;  and all reporting wi l l  be against categories of the work 

breakdown structure. 

14.5 INTEGRATED TEST PLANNING 

A close link must be maintained between the engineering design 

and test  requirements definition, test  planning, t e s t  implementation, 

and tes t  evaluation. 
properly related to supplement each other. 

The various categories and levels of t es t  must  be 

Accordingly, an integrated tes t  plan is prepared for each system 

covering all testing from parts and materials to top-level system and 

intersystem tests. The applicable system integrated tes t  plan will be 

prepared by each system implementation organization, subject to 

approval and control by the cognizant system management office. 

An intersystems test  requirements document i s  to  be prepared by the 

project office to cover all tests with participation by more  than one 

system. 

be contained in the applicable system integrated test  plans. 
The detailed role of each system in such intersystem tests will 

The plan forms an agreement between the implementing organization 

and the cognizant SMO relative to overall testing plans and the reporting 

against those plans. 

and serves a s  a means of assessing test  value. 

par t  of the SMO technical monitoring effort. 

the tes t  implementation so that adequate allocation of resources for 

testing can be assured prior to the onset of design activity. 

The plan assures  technical adequacy of testing, 

The test  plan is a major 

Initially, i t  i s  a review of 

14.6 PROJECT RELIABILITY 

The Voyager project reliability assurance manager will formulate 

the project reliability program plan to specify the adaptation of NASA 

NPC 250-1 for Voyager. 

all individual Voyager system reliability program plans need to meet. 

These plans wi l l  then be prepared by the contractor o r  agency responsible 

for each system. 

will include: 

The plan will define the basic requirements that 

The basic requirements imposed on the system plans 



Standardized reliability procedures throughout 
the project 

The maximum possible use of existing government 
standards, practices, and procedures 

Departure f rom NPC 250-1 only af ter  justification 
and approval, with specific identification of the 
departure in the system plan 

Definition of responsibilities for  reliability for all 
organizational elements 

Application of MIL-STD-217 for standards applied 
to reliability prediction 

Compatibility of system reliability analyses with 
mission analyses 

Justification for selection of parts without a history 
of successful space application 

The reliability program wi l l  be subdivided into at least  eight 

elements for purposes of monitoring and control: 

0 Reliability program management 

0 Design support and analysis 

0 Design review and control 

0 Parts  control 

0 Materials and processes control 

0 Supplier control 

0 Failure reporting and correction 

0 Reliability testing 

In all of these areas  the reliability program plan will specify objectives 

and milestones and prescribe the documentation and monitoring 
requirements . 
14.7 QUALITY ASSURANCE 

A quality assurance plan for the Voyager project will be established 

by the project quality assurance manager, based on the provisions of 



NPC 200-2, to prevent defects in manufactured articles and assure con- 

formance to design and performance criteria. The plan will cover: 

Design and development control 

Supplier contr 01 

Inspection and certification 

Process and fabrication controls 

Sampling 

Workmans hip standards 

Nonconforming materials control 

Acceptance test verification 

Handling, shipping, and storing procedures 
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15. PROJECT COSTS 

Cost estimates for the entire Voyager project as defined in this 

study have been generated. 

utilized rather than detailed pricing analysis, since such analysis was 
beyond the resources of the study and not justified for  the general level 

of definition being developed. 

ment to the report. 

Gross scaling costing techniques have been 

The results are provided in the supple- 

The initial step in developing the cost estimates was to use the 

Space Planners Guide wherever applicable. When using the cost  curves 

contained in the Space Planners Guide, the necessary parameters  were 

obtained f rom the !'Voyager Support Study, Advanced Mission Definition 

Final Report, Volume I, Preferred Approach. In most  cases ,  these 

parameters  consisted of subsystem weights. Wherever applicable, the 

results of prior cost studies generated either by TRW or  other contractors 

were used. 

unit (General Motors), the Voyager shroud system (McDonne11-Douglas), 

and the propulsion system (TRW Systems). 

Aeronutronics contained costs on a landed science payload. 

costs were not in a directly usable form, they were only used as a check 

on the Space Planners Guide methods. 

dollars in  keeping with the adjustment recommended by the Space Planners 

Guide. 

Examples of costs obtained in this manner were the mobile 

A report  written by 

Since these 

The costs a r e  given in 1967 

The cost of the Saturn V launch vehicle was obtained f rom 

"NASA Authorization for Fiscal Year 1967, Hearings Before the 

Committee on Aeronautical and Space Sciences, U.  S. Senate. This 

document was also used for the cost data on the operational systems 

such as the tracking and data acquisition system. 
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